$\underline{\text { Functions of several variables - graphs and level curves }}$

Function of two variables

A function f of two variables is a rule that assigns to an ordered pair $(x, y) \in \mathbb{R}^{2}$ a value $z \in \mathbb{R}$.

Function of two variables

(1) More succinctly: a function f of two variables is function $f: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{2}$ is the domain of f.
(2) We write $z=f(x, y)$ (analogous to single variables: $y=f(x)$)

Example

(1) $f(x, y)=\frac{\cos (x)+y^{2}}{x y}$.

$$
f(\pi, 4)=\frac{\cos (\pi)+4^{2}}{\pi(4)}=\frac{15}{4 \pi}
$$

(2) $g(x, y)=\sqrt{x}+2 \ln (2-y)-\frac{1}{x}$.

The domain of g is $\left\{(x, y) \in \mathbb{R}^{2}: x>0, y<2\right\}$
Two-variable functions can be viewed as (1) tables of values (see Examples 2 and 3 in Stewward), (2) explicit formula or (3) graphically.

Graphs

Definition

The graph of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with domain D is the set

$$
\left.\left\{(x, y, z) \in \mathbb{R}^{3}: z=f(x, y) \text { for every }(x, y) \in D\right)\right\}
$$

Such graphs are typically surfaces in \mathbb{R}^{3}

Sketch

(1) $f(x, y)=-x-3 y+2$ (linear equation, i.e. a plane),
(2) $f(x, y)=\sqrt{16-x^{2}-y^{2}} \quad$ (hemisphere),
(3) $f(x, y)=\sqrt{x^{2}+y^{2}} \quad$ (top half of a cone)
(1) $\begin{array}{ll}f(x, y)=x^{2}+y^{2} \quad \text { (elliptic paraboloid) }\end{array}$

Level curves

Definition

The level curves of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

Visual exmple

Level curves

Definition

The level curves of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

Sketch the level curves of
(1) $f(x, y)=-3 x-y+2$ for $k=1,2,3$
(2) $f(x, y)=\sqrt{16-x^{2}-y^{2}}$ for $k=0,7,15$
(3) $f(x, y)=\sqrt{x^{2}+y^{2}}$ for $k=1,2,3$

Examples

(1) Find and sketch the domain of $f(x, y)=\sqrt{x^{2}+y^{2}-4}$
(2) Sketch the graph of $f(x, y)=2-x^{2}-y^{2}$
(3) Sketch the graph of $f(x, y)=\sqrt{4 x^{2}+y^{2}}$
(1) Draw a contour map for $f(x, y)=\ln \left(x^{2}+4 y^{2}\right)$ showing several level curves

