## Functions of several variables - graphs and level curves



## Function of two variables

A function f of two variables is a rule that assigns to an ordered pair  $(x, y) \in \mathbb{R}^2$  a value  $z \in \mathbb{R}$ .



### Function of two variables

• More succinctly: a function f of two variables is function  $f: D \to \mathbb{R}$ , where  $D \subseteq \mathbb{R}^2$  is the domain of f.

**2** We write z = f(x, y) (analogous to single variables: y = f(x))

### Example

Two-variable functions can be viewed as (1) tables of values (see Examples 2 and 3 in Stewward), (2) explicit formula or (3) graphically.

#### Definition

The graph of a function  $f : \mathbb{R}^2 \to \mathbb{R}$  with domain D is the set

$$\{(x, y, z) \in \mathbb{R}^3 : z = f(x, y) \text{ for every } (x, y) \in D)\}$$

Such graphs are typically surfaces in  $\mathbb{R}^3$ 

Sketch

f(x, y) = -x - 3y + 2 (linear equation, i.e. a plane),
 f(x, y) = √16 - x<sup>2</sup> - y<sup>2</sup> (hemisphere),
 f(x, y) = √x<sup>2</sup> + y<sup>2</sup> (top half of a cone)
 f(x, y) = x<sup>2</sup> + y<sup>2</sup> (elliptic paraboloid)

# Definition

The level curves of a function  $f : \mathbb{R}^2 \to \mathbb{R}$  are the curves with equations f(x, y) = k, where k is a constant in the range of f.

# Visual exmple

## Definition

The level curves of a function  $f : \mathbb{R}^2 \to \mathbb{R}$  are the curves with equations f(x, y) = k, where k is a constant in the range of f.

#### Sketch the level curves of

• 
$$f(x,y) = -3x - y + 2$$
 for  $k = 1, 2, 3$   
•  $f(x,y) = \sqrt{16 - x^2 - y^2}$  for  $k = 0, 7, 15$   
•  $f(x,y) = \sqrt{x^2 + y^2}$  for  $k = 1, 2, 3$ 

- $\ \, {\bf O} \ \, {\rm Find} \ \, {\rm and} \ \, {\rm sketch} \ \, {\rm the \ \, domain \ of} \ \, f(x,y)=\sqrt{x^2+y^2-4}$
- **2** Sketch the graph of  $f(x, y) = 2 x^2 y^2$
- **3** Sketch the graph of  $f(x, y) = \sqrt{4x^2 + y^2}$
- Oraw a contour map for  $f(x,y) = ln(x^2 + 4y^2)$  showing several level curves