Sequences and Series

If

$$
\lim x \rightarrow 8 \frac{1}{x-8}=\infty
$$

then

$$
\lim x \rightarrow 5 \frac{1}{x-5}=\infty
$$

Sequences

Definition

An infinite sequence of numbers is a list of numbers $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$, which is often written as $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$.

Examples:

- $(2,2,2,2,2, \ldots)$ is a constant sequence.
- $(1,-1,1,-1, \ldots)$ or $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$ or $a_{n}=(-1)^{n}$.
- $(1,3,5,7, \ldots)$ or $(2 n+1)_{n=0}^{\infty}$ or $a_{n}=2 n+1$.
- $\left(\frac{1}{n}\right)_{n=1}^{\infty}$.

Sequences

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to number a L, if for ever $\epsilon>0$ there is a number $N \in \mathbb{N}$ such that

$$
\text { whenever } n>N \text { then }\left|a_{n}-L\right|<\epsilon \text {. }
$$

(we call L the limit and write $\lim _{n \rightarrow \infty} a_{n}=L$.)

- The sequence diverges if it does not converge.

Example: Use the definition of convergence to show that

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}+n-1}{n^{2}+1}=4
$$

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}+n-1}{n^{2}+1}=4
$$

We want to show that $\left|\frac{4 n^{2}+n-1}{n^{2}+1}-4\right| \leq \epsilon$. Note that

$$
\begin{aligned}
\left|\frac{4 n^{2}+n-1}{n^{2}+1}-4\right| & =\left|\frac{n-5}{n^{2}+1}\right| \\
& =\frac{n-5}{n^{2}+1} \quad(\text { as long as } n \geq 5) \\
& \leq \frac{1}{n} \quad(\text { check }!)
\end{aligned}
$$

So we choose N such that $N>\frac{1}{\epsilon}$ (i.e. $\frac{1}{N}<\epsilon$) and $N \geq 5$. Now, if $n \geq N$ (i.e. $\frac{1}{n} \leq \frac{1}{N}$), then

$$
\left|\frac{4 n^{2}+n-1}{n^{2}+1}-4\right| \leq \frac{1}{n} \leq \frac{1}{N}<\epsilon
$$

Sequences

Sometimes we can say how a sequence diverges:

Definition

- $\lim _{n \rightarrow \infty} a_{n}=\infty$ (diverges to infinity), if for every M, there is N such that for all $n>N$ we have $a_{n}>M$.
- $\lim _{n \rightarrow \infty} a_{n}=-\infty$ (diverges to negative infinity), if for every M, there is N such that for all $n>N$ we have $a_{n}<M$.

Useful limits

(1) $\lim _{n \rightarrow \infty} r^{n}= \begin{cases}\infty & \text { if } r>1 \\ 1 & \text { if } r=1 \\ 0 & \text { if }|r|<1 \\ \text { no limit } & \text { if } r \leq-1\end{cases}$
(2) $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$
(3) $\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty$
(1) $\lim _{n \rightarrow \infty} T_{n}(x)$ where $T_{n}(x)$ is the Maclaurin polynomial of $f(x)=\frac{1}{1-x}$. Here are some steps:
(i) From the preliminary homework $T_{n}(x)=1+x+x^{2}+\cdots+x^{n}$. Now show $T_{n}(x)=\frac{1-x^{1+n}}{1-x}=f(x)-\frac{x^{1+n}}{1-x}$.
(ii)Therefore $R_{n}(x)=\frac{x^{1+n}}{1-x}$
(ii) Now use (1) to determine when $\lim _{n \rightarrow \infty} T_{n}(x)=f(x)$.

Examples

In each case find the limit if it exists.
(1) $\lim _{n \rightarrow \infty} \frac{c}{n} \quad(c$ is any constant $)$
(2) $\lim _{n \rightarrow \infty} \frac{3 n^{4}+5 n^{2}-n+1}{n^{4}-n+1}$
(3) $\lim _{n \rightarrow \infty} \frac{n^{2}-3 n}{e^{n}+4 n}$
(1) $\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n+4}}$
(-) $\lim _{n \rightarrow \infty} \frac{3^{2 n}-n!}{5^{n}}$

