Limits and Contuity

Consider $f(x, y)=\frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}$ and the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.
Let's see what happens if we approach $(0,0)$ from two paths: the positive x-axis and then the positive y-axis.

Along the x-axis $y=0$,

Then

$$
\lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=\lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1
$$

Consider $f(x, y)=\frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}$ and the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.
Let's see what happens if we approach $(0,0)$ from two directions: the positive x-axis and then the positive y-axis.
Along the x-axis $y=0$ and

$$
\lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=\lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1
$$

Along the y-axis $x=0$,

Then

$$
\lim _{(0, y) \rightarrow(0,0)} f(0, y)=\lim _{(0, y) \rightarrow(0,0)} \frac{y^{2}}{2 y^{2}}=\frac{1}{2}
$$

Consider $f(x, y)=\frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}$ and the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.
Along the x-axis $y=0$ and

$$
\lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=\lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1
$$

Along the y-axis $x=0$ and

$$
\lim _{(0, y) \rightarrow(0,0)} f(0, y)=\lim _{(0, y) \rightarrow(0,0)} \frac{y^{2}}{2 y^{2}}=\frac{1}{2}
$$

The limits differ when approached from two different paths!! Hence

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

cannot exist; else it would be ambiguous - is it 1 or $\frac{1}{2}$?!

- Moral: For functions of more that one variable there are infinitely many paths from which to approach a limit
- So the limits exists if ALL of the infinitely many directions give the SAME limit.
- Upshot: To show a limit DNE we only need to show the limits approached from two distinct paths differ.

Limits and continuity

Limit

Let $f: D \rightarrow \mathbb{R}$ be a function with $D \subseteq \mathbb{R}^{2}$. Then

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x, y)-L|<\varepsilon$, whenever $(x, y) \in D$ and $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$.

Continuous

A function $f: D \rightarrow \mathbb{R}$, with $D \subseteq \mathbb{R}^{2}$, is continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b) .
$$

Examples

Find the limit, if it exists, and determine if the function is continuous at the limiting point.
(1) $\lim _{(x, y) \rightarrow(2, \pi)} e^{x y}-x \cos y-\frac{2 x^{3}}{y}$,
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$,
(3) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$,
(1) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y^{2}}{x^{4}+3 y^{4}}$,
(6) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y}{x^{8}+y^{4}}$,
(6) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=0$

