Partial derivatives

The tangent line in the direction of x.

The tangent line in the direction of x.

Let $f(x, y)$ be a two variable function. Then the partial derivatives are

Definitions

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

A partial derivative is a derivative in the x direction or the y direction. Moral: find the usual derivative w.r.t. one variable by viewing all other variables as constants.

Definitions

Notation

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=D_{1} f=D_{x} f .
$$

(Similarly for other variable.)
Higher derivatives:

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
$$

(similarly for $f_{x x}, f_{x y y}, f_{x y z y x z z z z y x}$ etc.)

Interpretations

We can interpret f_{x}, for example,

- as the rate of change of $z=f(x, y)$ as x changes
- geometrically: $f_{x}(a, b)$ is the gradient/slope of the tangent to curve where the plane $y=b$ intersects the surface $f(x, y)$.

Clairaut's Theorem

Suppose $f(x, y)$ is defined on a disk D that contains the point (a, b). If the functions $f_{x y}(x, y)$ and $f_{y x}(x, y)$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Examples

Use the contour map below to estimate $f_{x}(2,1)$ and $f_{y}(2,1)$.

Examples

Find $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{x x x y}$
(1) $f(x, y)=\cos (x)+e^{y}$
(2) $f(x, y)=\ln (x y)-x^{2} y^{3}$
(3) $f(x, y)=\sin \left(x^{2}-5 y\right)-x e^{x} y$
(1) $f(x, y)=\sqrt{\sin (x)-4 y}+(x+2 y)^{2}$

Examples of applications

(1) Laplace's equation

$$
\frac{\partial^{2} u}{\partial^{2} x}+\frac{\partial^{2} u}{\partial^{2} x}=0
$$

models fluid flow, electrostatics, steady-state heat conduction. Show that $u(x, y)=e^{y} \cos (x)$ satisfies the Laplace equation.
(2) Wave equation

$$
\frac{\partial^{2} u}{\partial^{2} t}=a^{2} \frac{\partial^{2} u}{\partial^{2} x}
$$

models waves (e.g. $u(x, t)$ could represent the amplitude of the wave a distance x from some point and at time t).
Show that $u(x, t)=\cos (x-a t)+\sin (x-a t)$ satisfies the wave equation.

