

If $f: \mathbb{R} \rightarrow \mathbb{R}$ has a continuous derivative at $x=a$, then (for b "close" to a) we can approximate $f(b)$ with the equation of the tangent line at $f(a)$.

Analogously,
If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a continuous partial derivatives, then we want to approximate f with a tangent plane.

The tangent plane of $f(x, y)$ at $P(a, b, c)$ is defined as the plane containing both tangent lines T_{1} and T_{2} (having directions f_{x} and f_{y} and with the point P in common)

Tangent plane

If $f(x, y)$ has continuous partial derivatives, then the equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Find the equation of the tangent plane to the graph of $f(x, y)=\sin (x y)$ at $(2, \pi, 0)$.

Solution: $f_{x}(2, \pi)=\pi$ and $f_{y}(2, \pi)=2$. Thus,

$$
z-0=\pi(x-2)+2(y-\pi)
$$

or

$$
\pi x+2 y-z=4 \pi
$$

is the equation of the tangent plane

Linear apprximation

Consider a function $z=f(x, y)$ with continuous partial derivatives at a point $(a, b, f(a, b))$. Then the equation of the tangent plane to f at $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

or

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

(so z is a linear function in the two variables x and y)

The linearization of f at (a, b) is the function

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

The linear aproximation (or tangent approximation) of f at (a, b) is

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Examples

(1) Find the equation of the tangent plane to the graph of $f(x, y)=\ln (x y)-3 y^{2}$ at the point $(1,1,-3)$.
(2) Find the linearization of $f(x, y)=x^{2} e^{y}+\sin \left(\frac{y}{x}\right)$ at $(1,0)$.
(3) Use a linear approximation of $f(x, y)=x^{2} e^{y}+\sin \left(\frac{y}{x}\right)$ to estimate $f(1.1,-0.1)$.

