Chain Rule

For z = f(x, y), where x = g(t) and y = h(t), and all functions are differentiable:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Example: Find $\frac{dz}{dt}$ if $z = 3x + y\cos(x)$, where $x = 5t^2 - 1$ and $y = \sin(t)$.

Solution: We find the various derivatives (in terms of t):

$$\frac{\partial z}{\partial x} = 3 - y\sin(x) = 3 - \sin(t)\sin(5t^2 - 1) \text{ and }$$

$$\frac{\partial z}{\partial y} = \cos(x) = \cos(5t^2 - 1) \text{ and }$$

$$\frac{dx}{dt} = 10t, \frac{dy}{dt} = \cos(t)$$
Thus,

$$\frac{dz}{dt} = (3 - \sin(t)\sin(5t^2 - 1))10t + \cos(5t^2 - 1)\cos(t)$$

For z = f(x, y), where x = g(s, t) and y = h(s, t), and all functions are differentiable:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

and

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Example: Find $\frac{\partial f}{\partial s}$ if $f(x,y) = xe^y$, where x(s,t) = s + 2t and y(s,t) = sln(t).

Solution:
$$\frac{\partial z}{\partial s} = e^{sln(t)} + (s+2t)e^{sln(t)}ln(t)$$

Implicit functions

For F(x, y, z) = 0, where z = f(x, y) implicitly:

$$\frac{\partial z}{\partial x} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

and

$$\frac{\partial z}{\partial y} = -\frac{\left(\frac{\partial F}{\partial y}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

Examples

- $z = x^2 y^2 + 4xy$, with $x = 3\cos(t)$ and $y = e^t$. Find $\frac{dz}{dt}$.
- ② $z = \sin(x)\cos(y)$, with $x = \frac{1}{t^2}$ and $y = \ln(t)$. Find $\frac{dz}{dt}$.
- **3** $z = e^{(x^2 \cos(y))}$, with $x = st^2$ and $y = te^s$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- ① $z = x \sin(y) xy$, with $x = \frac{u}{v^2}$ and $y = \tan(uv)$. Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.
- $If <math>x^3 2y = \sin(xy), \text{ find } \frac{dy}{dx}.$
- If $ye^x + ln(x+y) = x\cos(y)$, find $\frac{dy}{dx}$.