Directional derivatives

WHY DOESDFT OSMOSNS COORK CNKBTHUS。

Definitions

Let $f(x, y)$ be a two variable function.
The directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if the limit exists.

Theorem

If $f(x, y)$ is differentiable, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

Gradient vector

Note:

$$
D_{\mathbf{u}} f=f_{x} a+f_{y} b=\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle
$$

Definition

The gradient of $f(x, y)$ is the vector function

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

In this notation the directional derivative can be written as

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot\langle a, b\rangle
$$

Example: Find the derivative of $f(x, y)=x^{2} \ln (y)$ at $(3,1)$ in the direction $\vec{u}=3 \vec{i}-4 \vec{j}$.

Functions of three variables

Consider $f(x, y, z)$ and a unit vector $\mathbf{u}=\langle a, b, c\rangle$. Then

$$
D_{\mathbf{u}} f=f_{x} a+f_{y} b=f_{z} c=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \cdot\langle a, b, c\rangle
$$

Definition

The gradient of $f(x, y, z)$ is the vector function

$$
\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle
$$

Hence,

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y, z) \cdot\langle a, b, c\rangle
$$

What is the maximum rate of change of f, and in which direction does this ocur?

Theorem
If f is differentiable, then the maximum value of $D_{\mathbf{u}} f$ is $|\nabla f|$ and it occurs when \mathbf{u} has the same direction as $|\nabla f|$.

Tangent planes to level surfaces

Suppose S is a surface with equation $F(x, y, z)=k$.
The tangent plane to S at the point $\left(x_{0}, y_{0}, z_{0}\right)$ has normal vector

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right)=\left\langle F_{x}\left(x_{0}, y_{0}, z_{0}\right), F_{y}\left(x_{0}, y_{0}, z_{0}\right), F_{z}\left(x_{0}, y_{0}, z_{0}\right)\right\rangle
$$

and equation
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.

For a level curve (or level surfaces) ∇f is always perpendicular to the (tangent of) the curve; that is, the maximum rate of change occurs in a perpendicular direction to a level curve (or surface)

Level curves $f(x, y)=k$

Curve of maximum rate of change from \mathbf{P}

Examples

(a) Find the directional derivative at the given point, the maxim rate of change and the direction in which it occurs:
(1) $f(x, y)=\frac{e^{x}}{4 y}$ at $(0,2)$ in the direction $\mathbf{v}=\langle 1,1\rangle$
(2) $F(x, y, z)=\ln (z y)-x \cos (y)+z$ at $(1, \pi, 2)$ in the direction $\mathbf{v}=\langle-1,0,2\rangle$
(b) Find the equation of the tangent plane to the surface given by $x e^{y}-x z^{2}=-9$ at the point $(3,0,-2)$

