Maxima and Minima
"You really should brush more. You've got a huge
 concavity."
"Well, if I wind up needing a root canal, at least both my rats are imaginary."

Definitions

Let $f(x, y)$ be a two variable function. Then f
(1) has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for every (x, y) in some disk containing (a, b), and $f(a, b)$ is the local maximum value,

local maxima

Definitions

Let $f(x, y)$ be a two variable function. Then f
(1) has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ for every (x, y) in some disk containing (a, b), and $f(a, b)$ is the local minimum value,

Definitions

Let $f(x, y)$ be a two variable function. Then f
(1) has an absolute maximum at (a, b) if $f(a, b) \geq f(x, y)$ for all (x, y) (in the domain of f).

Global maximum

Definitions

Let $f(x, y)$ be a two variable function. Then f
(1) has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ for every (x, y) in some disk with centre (a, b) and $f(a, b)$ is the local minimum value,
(2) has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for every (x, y) in some disk with centre (a, b) and $f(a, b)$ is the local maximum value,
(3) has an absolute minimum at (a, b) if $f(a, b) \leq f(x, y)$ for all (x, y) (in the domain of f), and
(1) has an absolute maximum at (a, b) if $f(a, b) \geq f(x, y)$ for all (x, y) (in the domain of f).

Theorem

If f has a local maximum or minimum at (a, b) and $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist, then

$$
f_{x}(a, b)=f_{y}(a, b)=0
$$

Definition

A point (a, b) in the domain of f is a critical point (or stationary point)
(1) if $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) if one of $f_{x}(a, b)$ or $f_{y}(a, b)$ does not exist.

Second derivative test

Suppose f has continuous second order partial derivatives on a disk with centre (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Define

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

(1) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is local minimum.
(2) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is local maximum.
(3) If $D(a, b)<0$, then $f(a, b)$ is not a local maximum or minimum (in this case we call (a, b) a saddle point).

A saddle point:

Second derivative test

Suppose f has continuous second order partial derivatives on a disk with centre (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Define

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

(1) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is local minimum.
(2) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is local maximum.
(3) If $D(a, b)<0$, then $f(a, b)$ is not a local maximum or minimum (in this case we call (a, b) a saddle point).
$D(a, b)=0$ gives us no information, either way!

Absolute extrema

Extreme value theorem

If f is continuous on a closed and bounded set $D \subset \mathbb{R}$, the f attains an absolute maximum and minimum in D.

