Lagrange Multipliers

"I think you should be more explicit here in step two."

Method of Lagrange

To find the max and min values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$ (assuming $\nabla g \neq \mathbf{0}$ and such extreme values exist):
(1) Find all x, y, z and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z), \text { and } g(x, y, z)=k
$$

(2) Evaluate f at all points in (1)- largest is the max and smallest is the min.

More than one constraint

To find the max and min values of $f(x, y, z)$ subject to the constraints $g(x, y, z)=k$ and $h(x, y, z)=c$, we find all x, y, z, λ and μ such that

$$
\begin{gathered}
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu h(x, y, z), \text { and } \\
g(x, y, z)=k \text { and } h(x, y, z)=c
\end{gathered}
$$

