Error Estimates

Error

- An important application of series is estimating a function by using a partial sum S_{n} of the series (e.g. estimating e^{2})
- Depending on the application, a certain degree of accuracy is needed. So we need to know how many terms to add up so that the error is small enough for our needs.

Definitions

The error in estimating a series $\sum_{k=0}^{\infty} a_{n}$ by its $n^{t h}$-partial sum is given by

$$
\left|R_{n}\right|=\left|\sum_{k=0}^{\infty} a_{k}-S_{n}\right|=\left|\sum_{k=n+1}^{\infty} a_{k}\right|
$$

Terminology: Bounding the error means finding a number b such that the error is guaranteed to be smaller than b; that is, $\left|\sum_{k=n+1}^{\infty} a_{k}\right|<b$.

Alternating series error

Let $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ be an alternating series. Then

$$
\left|R_{n}\right|=\left|\sum_{k=n+1}^{\infty} a_{k}\right| \leq a_{n+1}
$$

Example: Find n such that $e^{-1} \approx \sum_{k=0}^{n} \frac{(-1)^{n}}{k!}$ is correct up to 3 decimal places:

$$
\left|R_{n}\right| \leq a_{n+1}=\frac{1}{(n+1)!}
$$

To find n, we should have $\frac{1}{(n+1)!}<0.0005=\frac{5}{10000}=\frac{1}{2000}$. That is, $(n+1)!>2000$. Computing factorials we see that $6!=720$ and $7!=5040$. So $n=6$ will do the job!

Bounding by comparison

Examples: Find n such that $e \approx \sum_{k=0}^{n} \frac{1}{k!}$ is correct up to 3 decimal places: Need n such that $\left|\sum_{k=n+1}^{\infty} a_{k}\right| \leq 0.0005$. Note:

- $a_{k}=\frac{1}{k!}$, which means that

$$
a_{k+1}=\frac{1}{(k+1)!}=\frac{1}{k!} \frac{1}{(k+1)}=a_{k} \frac{1}{(k+1)}
$$

- Since we consider a tail of the series (i.e. $\sum_{k=n+1}^{\infty} a_{k}$), we have $k+1>n+1$ and therefore

$$
a_{k+1}=a_{k} \frac{1}{(k+1)}<a_{k} \frac{1}{(n+1)}
$$

- Thus, our series is term by term less than the series with terms

$$
a_{n+1}, a_{n+1} \frac{1}{(n+1)}, a_{n+1}\left(\frac{1}{(n+1)}\right)^{2}, a_{n+1}\left(\frac{1}{(n+1)}\right)^{3}, \ldots
$$

- This is a geometric series with ratio $\frac{1}{(n+1)}$ and thus converges to $\frac{1}{n!(n)}$. Therefore solving $\frac{1}{n!(n)} \leq 0.0005$ gives n so that our error is less than 0.0005 .

Examples

(1) How many terms are needed to estimate $\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}}{k}$ such that error <0.05.
(2) How many terms are needed to estimate $\sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{k}}{k}$ such that error <0.05.
(3) Give a partial sum that estimate $\sin \left(\frac{1}{2}\right)$ correct up to 2 decimal places.
(1) Approximate the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!}$ correct up to 3 decimal paces

