Power series

Ratio test

Proposition

Let $\sum_{n=0}^{\infty} a_{n}$ be any series and suppose

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

If

- $L<1$ then $\sum_{n=0}^{\infty} a_{n}$ is (absolutely) convergent
- $L>1$ then $\sum_{n=0}^{\infty} a_{n}$ is divergent
- $L=1$ then this test says nothing....

Examples:

$$
\text { (i) } \sum_{n=0}^{\infty} \frac{n!}{5^{n}}-\operatorname{div}
$$

$$
\text { (ii) } \sum_{n=0}^{\infty} \frac{2^{n}}{(n+1)!}-\text { conv }
$$

Power series

Definition

A power series centered at $x=a$ has the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

where each c_{n} is a constant.
Note:
(i) a power series defines a function $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$,
(ii) every Taylor series is power series with $c_{n}=\frac{f^{(n)}(a)}{n!}$.

Power series convergence - example

We can use the ratio test to find the x-values for which a power series converges: Consider

$$
\sum_{n=0}^{\infty}(-1)^{n} n 4^{n} x^{n}
$$

(1) Write an expression for $\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(n+1) 4^{n+1} x^{n+1}}{n 4^{n} x^{n}}\right|$
(2) Now take the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left(\lim _{n \rightarrow \infty} \frac{(n+1)}{n}\right) 4|x|=4|x|$
(3) For which value(s) of x is the limit above less that 1 ?

When $|x|<\frac{1}{4}$ or $-\frac{1}{4}<x<\frac{1}{4}$
(9) Does the series converge for $x=-\frac{1}{4}$ and/or $\frac{1}{4}$? Div for both The interval $\left(-\frac{1}{4}, \frac{1}{4}\right)$ is called the interval of convergence and $R=\frac{1}{4}$ the radius of convergence.

Convergence of power series - in general

For a general power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left(\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|\right)|(x-a)|
$$

Let $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L$. Then $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges absolutely if

$$
L|x-a|<1, \text { that is, when }|x-a|<\frac{1}{L}
$$

We call $R=\frac{1}{L}$ the radius of convergence and the interval of convergence is one of the following: $(a-R, a+R),(a-R, a+R]$, $[a-R, a+R)$ or $[a-R, a+R]$.

Power series differentiation and integration

Suppose $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. Then
(1) $f^{\prime}(x)=\sum_{n=0}^{\infty} n c_{n}(x-a)^{n-1}$,
(2) $\int f(x) d x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}$, and
in both cases the radius of convergence is the same as
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ (caution: the interval of convergence might change at the ends points!).

That is, differentiation and integration is done term-by-term in the series and doesn't change radius of convergence.

Power series representation, differentiation and integration - an application

Consider the function $g(x)=\int_{0}^{x} e^{-x^{2}} d x$. We can approximate $g(2)$ with power series:
(1) Use the power series of e^{x} to find a power series for $e^{-x^{2}}$.
(2) What is the radius and interval of convergence for $e^{-x^{2}}$ and is 2 in this interval?
(3) Now integrate $e^{-x^{2}}$ to find $g(x)$.
(1) How many terms are needed to appropriate $g(2)$ correct up to 2 decimal places?

Exercises

(1) Find the radius and interval of convergence: $\sum_{k=1}^{\infty} \frac{x^{k}}{\sqrt{k}}$.
(2) Find the radius and interval of convergence: $\sum_{k=1}^{\infty} \frac{x^{k}}{k 3^{k}}$.

- Find the radius and interval of convergence: $\sum_{k=0}^{\infty} \frac{x^{n}}{n!}$.
- Find a power series representation for $\frac{3}{2+2 x}$ (Hint: use the power series for $\frac{1}{1-x}$).
- Find a power series representation for $\tan ^{-1}(x)$ (Hint: use the derivative $\tan ^{-1}(x)$ and its power series).

