#### Power series



### Ratio test

#### Proposition

Let  $\sum_{n=0}^{\infty} a_n$  be any series and suppose

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$$

 $\mathbf{If}$ 

- L < 1 then  $\sum_{n=0}^{\infty} a_n$  is (absolutely) convergent
- L > 1 then  $\sum_{n=0}^{\infty} a_n$  is divergent
- L = 1 then this test says nothing....

Examples:

(i) 
$$\sum_{n=0}^{\infty} \frac{n!}{5^n}$$
 -div (ii)  $\sum_{n=0}^{\infty} \frac{2^n}{(n+1)!}$  -conv

#### Definition

A power series centered at x = a has the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots,$$

where each  $c_n$  is a constant.

Note:

(i) a power series defines a function  $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ , (ii) every Taylor series is power series with  $c_n = \frac{f^{(n)}(a)}{n!}$ .

2

3

We can use the ratio test to find the x-values for which a power series converges: Consider

$$\sum_{n=0}^{\infty} (-1)^n n 4^n x^n.$$
Write an expression for  $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)4^{n+1}x^{n+1}}{n4^n x^n}\right|$ 
Now take the limit  $\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \left(\lim_{n \to \infty} \frac{(n+1)}{n}\right) 4|x| = 4|x|$ 
For which value(s) of x is the limit above less that 1?
When  $|x| < \frac{1}{4}$  or  $-\frac{1}{4} < x < \frac{1}{4}$ 
Does the series converge for  $x = -\frac{1}{4}$  and/or  $\frac{1}{4}$ ? Div for both

The interval  $\left(-\frac{1}{4}, \frac{1}{4}\right)$  is called the **interval of convergence** and  $R = \frac{1}{4}$ the radius of convergence.

For a general power series  $\sum_{n=0}^{\infty} c_n (x-a)^n$ :

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \left( \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| \right) |(x-a)|$$

Let  $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = L$ . Then  $\sum_{n=0}^{\infty} c_n (x-a)^n$  converges absolutely if

$$L|x-a| < 1$$
, that is, when  $|x-a| < \frac{1}{L}$ 

We call  $R = \frac{1}{L}$  the **radius of convergence** and the **interval of convergence** is one of the following: (a - R, a + R), (a - R, a + R], [a - R, a + R) or [a - R, a + R].

## Power series differentiation and integration

Suppose 
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
. Then

• 
$$f'(x) = \sum_{n=0}^{\infty} nc_n (x-a)^{n-1},$$

**2** 
$$\int f(x) dx = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$$
, and

in both cases the **radius of convergence is the same** as  $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$  (caution: the interval of convergence might change at the ends points!).

That is, differentiation and integration is done term-by-term in the series and doesn't change radius of convergence.

# Power series representation, differentiation and integration - an application

Consider the function  $g(x) = \int_0^x e^{-x^2} dx$ . We can approximate g(2) with power series:

- Use the power series of  $e^x$  to find a power series for  $e^{-x^2}$ .
- **2** What is the radius and interval of convergence for  $e^{-x^2}$  and is 2 in this interval?
- **③** Now integrate  $e^{-x^2}$  to find g(x).
- (1) How many terms are needed to appropriate g(2) correct up to 2 decimal places?

Find the radius and interval of convergence:  $\sum_{k=1}^{\infty} \frac{x^k}{\sqrt{k}}$ . Find the radius and interval of convergence:  $\sum_{k=1}^{\infty} \frac{x^k}{k^{3k}}$ . Find the radius and interval of convergence:  $\sum_{k=0}^{\infty} \frac{x^n}{n!}$ . • Find a power series representation for  $\frac{3}{2+2x}$  (Hint: use the power series for  $\frac{1}{1-r}$ ). • Find a power series representation for  $\tan^{-1}(x)$  (Hint: use the derivative  $\tan^{-1}(x)$  and its power series).