Riemann Sums

Recap

- Divide an interval $[a, b]$ into n subintervals $\Delta x=\frac{b-a}{n}$.
- Choose a point x_{i}^{*} in interval i for $i=1,2, \ldots, n$.
- Define the Riemann sum by $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
- Define the integral of f by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

- We interpret the integral as the area "under" the graph of f.

Net Change Theorem

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

The integral of a rate of change gives the net change.
Example: The graph below gives the rate of growth of a population in years. Approximate the net growth in the first three years.

Average value of a function

The average value of a function f over $[a, b]$ is

$$
\text { Ave }=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example: Find average work done to stretch a spring 5 meters from its rest position, if the force required at distance d from rest is given by $F=k x$ for some constant k. (Work $=$ Force x distance)

Volume by slicing

Idea: Approximate a volume by cutting it into thin slices and adding up the cross-sectional areas of all the slices.

Examples: (i) Approximate the volume of a sphere with radius $r=1$. Express the volume as an integral.

Volume by slicing

Idea: Approximate a volume by cutting it into thin slices and adding up the cross-sectional areas of all the slices.

Examples: (i) Approximate the volume of a sphere with radius $r=1$. Express the volume as an integral.

Volume by slicing

Idea: Approximate a volume by cutting it into thin slices and adding up the cross-sectional areas of all the slices.

Examples: (i) Approximate the volume of a sphere with radius $r=1$. Express the volume as an integral.

Volume by slicing

Idea: Approximate a volume by cutting it into thin slices and adding up the cross-sectional areas of all the slices.

Examples: (ii) Approximate the volume of the solid formed by rotating $y=\sqrt{x}$ about the x-axis with $2 \leq x \leq 10$. Express the volume as an integral

