Integration by Parts

INTEGRATION BY PARTS:

GIVEN A PROBLEM OF THE FORM:

$$\int f(x)g(x)dx = ?$$

CHOOSE VARIABLES U AND V SUCH THAT:

$$u = f(x)$$

 $dv = g(x) dx$

NOW THE ORIGINAL EXPRESSION BECOMES:

WHICH DEFINITELY LOOKS EASIER.

ANYWAY, I GOTTA RUN.

BUT GOOD LUCK!

Question:

$$\int xe^x \, dx = ?$$

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Let

$$u = x$$
 $\underline{dv} = e^x dx$, then $\underline{du} = dx$ $v = e^x$

$$\int \frac{x}{u} \frac{e^x}{dv} dx = \frac{x}{u} \frac{e^x}{v} - \int \frac{e^x}{v} \frac{dx}{du} = x e^x - e^x + C$$

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Let u = x, then du = dx and let $dv = e^x dx$, then (by "usual" integration) $v = e^x$. So

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$$

For a definite integral:

$$\int_0^1 xe^x \, dx = [xe^x]_0^1 - \int_0^1 e^x \, dx = [xe^x - e^x]_0^1 = 1$$

$$\int x \sin(2x) dx = ?$$

$$u = x$$
 $dv = \sin(2x)dx$
 $du = dx$ $v = -\frac{1}{2}\cos(2x)$

$$\int x \sin(2x) dx = -\frac{1}{2}x \cos(2x) + \frac{1}{2} \int \cos(2x) dx$$
$$= -\frac{1}{2}x \cos(2x) + \frac{1}{4}\sin(2x) + C$$

$$\int ln(x)dx = ?$$

$$u = ln(x)$$
 $dv = 1 dx$
 $du = \frac{1}{x}dx$ $v = x$

$$\int ln(x)dx = xln(x) - \int x\left(\frac{1}{x}\right) dx$$
$$= xln(x) - x + C$$

$$\int \arctan(x)dx = ?$$

$$u = \arctan(x)$$
 $dv = 1 dx$
 $du = \frac{1}{1+x^2} dx$ $v = x$

$$\int ln(x)dx = x \arctan(x) - \int \frac{x}{1+x^2} dx$$
$$= x \arctan(x) - \frac{1}{2}ln(1+x^2) + C$$

$$\int e^x \cos(x) dx = ?$$

$$u = e^x \qquad dv = \cos(x) dx$$

$$du = e^x dx \qquad v = \sin(x)$$

Then

$$\int e^x \cos(x) dx = e^x \sin(x) - \int e^x \sin(x) dx$$
$$= e^x \sin(x) - \left[-e^x \cos(x) + \int e^x \cos(x) dx \right]$$

Thus

$$\int e^{x} \cos(x) \, dx = \frac{1}{2} e^{x} \sin(x) + \frac{1}{2} e^{x} \cos(x)$$

Exercises

- **3** Prove the reduction formula $\int x^n e^x dx = x^n e^x n \int x^{n-1} e^x dx$
- \bullet $\int x^6 e^x dx$ (use the reduction formula from the previous problem)