Volumes of Revolution

"What if someone hits the mute button?"

Revolution about the x-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 1$, the x-axis and $y=\sqrt{x}$ about the x-axis.

Volume by disks - revolved about the x-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 1$, the x-axis and $y=\sqrt{x}$ about the x-axis .

Cross-sectional area of one disk: $A(x)=\pi y^{2}=\pi(\sqrt{x})^{2}$ Volume of one disk: $V=A(x) \Delta x$ (i.e. area \times thickness) Volume of the whole solid:

$$
V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi x d x=\frac{\pi}{2}
$$

Volume by cylindrical shells - revolved about the x-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 1$, the x-axis and $y=\sqrt{x}$ about the x-axis .

Idea:

Volume by cylindrical shells - revolved about the x-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 1$, the x-axis and $y=\sqrt{x}$ about the x-axis.

Volume of one cylindrical shell: $V=2 \pi y^{*}\left(1-\left(y^{*}\right)^{2}\right) \Delta y$ (i.e. circumference \times length \times thickness)
Volume of the solid:

$$
V=\int_{0}^{1} 2 \pi\left(y-y^{3}\right) d y=\frac{\pi}{2}
$$

Volume by cylindrical shells - revolved about the y-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 2$, the $y=0$ and $y=2 x^{2}-x^{3}$ vabout the y-axis. Idea:

Volume by cylindrical shells - revolved about the y-axis

Consider the solid formed by revolving the region bounded by $0 \leq x \leq 2$, the $y=0$ and $y=2 x^{2}-x^{3}$.

Volume of one cylindrical shell:

$$
V=2 \pi x y(x) \Delta x=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x
$$

(i.e. circumference \times length \times thickness)

Volume of the solid:

$$
V=\int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x=\frac{16 \pi}{5}
$$

Exercises

Consider the region R bounded by $0 \leq x \leq 1$ and $x^{2} \leq y \leq \sqrt{x}$.

(1) Find the volume of the solid obtained by revolving R about the x-axis.
(2) Find the volume of the solid obtained by revolving R about the y-axis.

