Volumes of Revolution

@ MARK ANDERSON

WWW.ANDERTOONS.COM

"What if someone hits the mute button?"

Consider the solid formed by revolving the region bounded by $0 \le x \le 1$, the x-axis and $y = \sqrt{x}$ about the x-axis.

Volume by disks - revolved about the x-axis

Consider the solid formed by revolving the region bounded by $0 \le x \le 1$, the x-axis and $y = \sqrt{x}$ about the x-axis.

Cross-sectional area of one disk: $A(x) = \pi y^2 = \pi (\sqrt{x})^2$ Volume of one disk: $V = A(x)\Delta x$ (i.e. area × thickness) Volume of the whole solid:

$$V = \int_0^1 A(x) \, dx = \int_0^1 \pi x \, dx = \frac{\pi}{2}$$

Consider the solid formed by revolving the region bounded by $0 \le x \le 1$, the x-axis and $y = \sqrt{x}$ about the x-axis .

Idea:

Volume by cylindrical shells - revolved about the x-axis

Consider the solid formed by revolving the region bounded by $0 \le x \le 1$, the x-axis and $y = \sqrt{x}$ about the x-axis.

Volume of one cylindrical shell: $V = 2\pi y^* (1 - (y^*)^2) \Delta y$ (i.e. circumference \times length \times thickness) Volume of the solid:

$$V = \int_0^1 2\pi (y - y^3) \, dy = \frac{\pi}{2}$$

Consider the solid formed by revolving the region bounded by $0 \le x \le 2$, the y = 0 and $y = 2x^2 - x^3$ value the y-axis. Idea:

Consider the solid formed by revolving the region bounded by $0 \le x \le 2$, the y = 0 and $y = 2x^2 - x^3$.

Volume of one cylindrical shell:

$$V = \frac{2\pi x y(x)}{\Delta x} \Delta x = 2\pi x (2x^2 - x^3) \Delta x$$

(i.e. circumference \times length \times thickness) Volume of the solid:

$$V = \int_0^2 2\pi x (2x^2 - x^3) \, dx = \frac{16\pi}{5}$$

Consider the region R bounded by $0 \le x \le 1$ and $x^2 \le y \le \sqrt{x}$.

- Find the volume of the solid obtained by revolving *R* about the *x*-axis.
- Find the volume of the solid obtained by revolving R about the y-axis.