Summary of the lecture:

- * Last class, we introduced the volume as an integral of the area of the cross-sections of a solid.
- * This class is dedirated to computing the volume of solids that have a symmetry axis (such as spheres, cones, ...), through revolution around that axis.
- + we see 3 methods: disks, washers and cylindrical shells are ways to approximate the volume.

Disks

* The disk method is useful when the solid touches the rotation axis.

The method consists of dividing the solid into disks perpendicular to the votation axis, and rentered on it.

- 1. Divide the solid into the disks
- 2 compute the area of each disk
- 3. Integrate along the rotation axis

Example

A glass of wine stands in front of a cartesian plane (!) such that its stand is in front of the y-axis. The stand is 4 inches high, and the glass is 8 inches high. If the bulb is shaped following $x^2+4=f(x)$, what is its volume?

- Disks centered around x=0 (y-axis)

- For 4 < y < 8, the radius of the disk is

- W-4, thus the area is T(y-4).

The volume of the glass is computed by

$$\int_{4}^{8} \pi (y-4) dy = \pi \int_{4}^{8} y-4 dy = \pi \left(\frac{y^{2}}{2}-4y\right) \Big|_{y=4}^{y=8} = 8\pi,$$

and is thus 8 T inches?

Question: (an you compute the volume of a sphere of radius r?

2 win

- * Around the x-axi's.
- * At a given value of x,

 the disk in the cross-section
 has readius \(\sigma_{z} \times^{\infty} \)

 * because the projection
 of the sphere on the

 * We integrate for -r \(\times \times \)

 The area at a given x is

 \(\times (r^2 \times^2) \)

$$\int_{-r}^{r} \pi(i^{2}-x^{2}) dx = \pi \int_{-r}^{r} (r^{2}-x^{2}) dx = \pi \left((r^{2}-x^{2}) - (r^{2}+r^{3}) \right)$$

$$= 4\pi (3)$$

$$= 4\pi (3)$$

Washers

- * It is similar to disks, but used when the solid is not touching the axis.
- * A washer is the difference of two disks, and its area is the difference of the areas of the disks.

Example

A thick salad bowl has a circular base of radius two inches, and then is straight inside and only cutside, according to

and is rotating around the y-axis,

It is one inch high

If the base is very thin (ie negligeable), what is the volume of the bowl (the material)

7+2

We cut it into washers of after radius x= 14+2

and inner radius x=y+z.

(3,1)

We integrate for 05451:

top view z

THE THE PARTY OF T

$$= TT \left(-\frac{4^{3}}{3} - \frac{34^{2}}{2} + 4 \cdot \frac{2}{3} \cdot \frac{32}{3} \right)$$

$$= \pi \left(\frac{-1}{3} - \frac{3}{2} + \frac{8}{3} \right) = \frac{5\pi}{6},$$

and the volume of the salad bowl is 511.

Cylindrical shells

* The approximation is made by concentric cylinders

* It is useful when the computations are hard using disks

* The cylinders are around the symmetry axis.

Example In class, I did instead the example on page 5.

If the glass from before has instead the shape of

fix)= tan (x)/x+3(this is more realistic...) and the bulb has

Siggest radius 1.4 inch, what is the volume it contains?

* try to do it using the disks. It is hard!

use the method of the cylindrical shells to computeit.

* Each cylinder has height l-tancx)_3, where l=f(1.4) is the height of the stars.

* We multiply by the circumference of the border of the cylinder: 211x

* the cover of the cylinder (the shell) has area 271x(1-tanox)-3) 0-

4 (14,f(14))

igges

*

se

*

* We integrate over x, between 0 and 1.4.

$$\int_{0}^{1.4} 2\pi x \left(1 - \frac{\tan(x)}{x} - 3\right) dx = \int_{0}^{1.4} 2\pi x \left(1 - 2\pi \frac{\tan(x)}{x} - 6\pi \frac{x}{x}\right) dx$$

$$= \left(2\pi \frac{x^{2}}{x} + 2\pi \frac{\ln(\cos(x))}{x} - 3\pi \frac{\ln(x)}{x}\right)$$

$$= \pi \int_{0}^{1.4} \ln(\cos(x)) - 3\pi \int_{0}^{1.4} \ln(\cos(x)) dx$$

$$= \frac{\tan(x)}{\ln(x)}$$

$$= \frac{\tan(x)}{\ln(x)}$$

$$= \frac{\tan(x)}{\ln(x)}$$

$$= \pi \cdot \tan(x) \cdot (14) \cdot (14) + 3\pi \int_{0}^{1.4} \ln(\cos(x)) dx$$

and the volume of the glass is (to tan(1.4).(1.4) + 27 In(cos(1.4)))
inches?

General method:

1. Divide the area of the rotating part in segments parallel to the axis of rotation.

Z- Creade a cylindrical shell by notating this segment.

Its area is 27thx, where h is the height of
the cylinder at x, if we are rotating along the y-axis.

3- Integrate on the x-axis (perpendicular to the notation.)

Disks or shells

We can in general use either method. The best way to know which one should be used is to try to compute the volume.

Reference: Sames STEWART. Calculus, 8th edition. Sections 5.2 and 5.3 Example (volume by washers)

Find the volume of rotation around the y-axis of the area between $y=x^2$ and $y=\sqrt{x}$, for x between 0 and 1.

1. Draw a picture

Between X=0 and X=1 (but also between Y=0 and Y=1):

•
$$\sqrt{x} = y = x = y^2$$
 inner radius
• $x^2 = y = x = y$ outer radius

top view, after rotation,

of the green slive

The total volume is obtained by integrating the area of each slice over the interval [0,1] on the y-axis:

$$\int_{0}^{1} T \left((\sqrt{y})^{2} - (y^{2})^{2} \right) dy = \int_{0}^{1} T \left(y - y^{4} \right) dy$$

$$= T \left(\frac{y^{2}}{2} - \frac{y^{5}}{5} \right) \Big|_{0}^{1}$$

$$= T \left(\frac{1}{2} - \frac{1}{5} \right)$$

$$= 3T$$
The volume of

The volume of revolution

10 is 3T/10 Cubic units.

Axis around which we revolve

Y-axis

x- a xi's

Washers

Strater radius 2-(inner radius) dy

So Tower radius linner radius dx

b Min

a coter radius

Shells.

So znich dx

50 2714h dy.

1 Junion

