
Math 8
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Section 1
February 3, 2020

First, some important points from the last class:

~v · ~w = |~v| |~w| cos(θ),

where θ is the angle between ~v and ~w.

〈a1, a2, a3〉 · 〈b1, b2, b3〉 = a1b1 + a2b2 + a3b3

The component of ~F on (or along, or in the direction of) ~d is

comp~d(
~F ) = |~F | cos(θ) =

~F · ~d
|~d|

and the projection of ~F onto ~d is

proj ~d(
~F ) =

(
|~F | cos(θ)

)
︸ ︷︷ ︸

component

(
1

|~d|
~d

)
︸ ︷︷ ︸
unit vector

=

(
~F · ~d
~d · ~d

)
~d

The work done by force ~F on an object moving in a straight line with displacement ~d is

W = ~F · ~d

“Work equals force dot displacement.”

~v · ~w = ~w · ~v

~v · (~w + ~u) = (~v · ~w) + (~v · ~u)

~v · (~w − ~u) = (~v · ~w)− (~v · ~u)

(t~v) · ~w = t(~v · ~w) = ~v · (t~w)

~0 · ~v = 0

~v · ~v = |~v|2

Theorem (the triangle inequality):

|~v + ~w| ≤ |~v|+ |~w|

Theorem (the Cauchy-Schwartz inequality):

|~v · ~w| ≤ |~v| |~w|
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An object • (at point P ) is attached by a rigid rod to a fixed point ◦ (point Q), but is
free to rotate around that point in any direction. The vector ~r goes to the object from the
fixed point around which it may rotate. A force ~F acts on the object.

The torque vector ~τ represents the tendency of the object to rotate around the fixed
point, caused by the force ~F .

If we decompose ~F into two component forces, ~Fp parallel to ~r and ~Fn normal to ~r, only
~Fn imparts torque.

The magnitude of the torque depends both on the force and on the distance from the
fixed point (think levers, or seesaws), and is

|τ | = |~r| |~Fn| = |~r| |~F | sin(θ).

The direction of τ gives the direction of the axis around which the object rotates.

Repetition for emphasis: The direction of τ gives the direction of the axis
around which the object rotates. It does not give the direction in which the
object moves.

This is the way we represent rotational motion. As the earth rotates around its
axis, different points on its surface are moving in different directions, but the
axis of rotation is the same for the entire globe. So torque, rotational (angular)
velocity, etc. are represented by vectors pointing along the axis of rotation.

In this picture, since ~r and ~F are both in the plane of the paper, the axis of rotation is
perpendicular to the paper, so ~τ points in a direction perpendicular to the paper — either
out or in. By convention, since the rotation is counterclockwise as we look at the paper, the
torque vector τ points out of the paper toward us.

Right-hand rule: Suppose a force ~F acts on an object at point P , causing a
rotational tendency around point Q, and ~r is the vector from the fixed point Q
to the object at P , inducing a torque ~τ around the point Q. If you point the
thumb of your right hand in the direction of τ and curl your fingers, they will be
pointing around ~τ from the vector ~r toward the vector ~F .
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Definition: The cross product, or vector product, of vectors ~r and ~F is the vector ~r× ~F
with the following properties:

1. |~r × ~F | = |~r| |~F | sin(θ) where θ is the angle between ~r and ~F .

2. ~r × ~F is perpendicular to both ~r and ~F .

3. ~r, ~F and ~r × ~F are oriented according to the right-hand rule: If all three vectors are
drawn from the same point, and you are looking down from the top of ~r× ~F , rotating
from ~r around to ~F appears as a counterclockwise rotation.

Note: The cross product is defined only in R3.

~w

KK

~v

::

~v × ~w points out of the paper. ~w × ~v points into the paper.

Two other ways to remember the right-hand rule:

Hold your arms out parallel to the ground and pointing slightly forwards, at an angle to
each other. If your right hand points in the direction of the first vector ~v and your left hand
points in the direction of the second vector ~w, then your head points in the direction of the
vector ~v × ~w. (Provided, of course, that you haven’t crossed your arms.)

The vectors ~v, ~w, and ~v × ~w, in that order, are oriented in the same way as î, ĵ, and k̂,
in that order. And, in fact, î× ĵ = k̂.

Example: Find the vector k̂ × ĵ.
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Algebra of the cross product.

The determinant of a matrix will help us compute cross products without getting too
mixed up.

det

(
a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣︸ ︷︷ ︸
∗∗∗

− a2
∣∣∣∣b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣b1 c1
b2 c2

∣∣∣∣
*** is the determinant of the matrix left when you cross out the row and column of a1.

Notice the alternating + and − signs.

The matrix determinant has many useful applications. We’re going to use it in the
formula for cross product:

〈v1, v2, v3〉 × 〈w1, w2, w3〉 =∣∣∣∣∣∣
î ĵ k̂
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =

∣∣∣∣v2 v3
w2 w3

∣∣∣∣ î− ∣∣∣∣v1 v3
w1 w3

∣∣∣∣ ĵ +

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ k̂ =

〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉 .

Example:

k̂ × ĵ =

∣∣∣∣∣∣
î ĵ k̂
0 0 1
0 1 0

∣∣∣∣∣∣ =

∣∣∣∣0 1
1 0

∣∣∣∣ î− ∣∣∣∣0 1
0 0

∣∣∣∣ ĵ +

∣∣∣∣0 0
0 1

∣∣∣∣ k̂ =

((0)(0)− (1)(1))̂i− ((0)(0)− (0)(1))ĵ + ((0)(1)− (0)(0))k̂ = −î

Example: Compute 〈1, 2, 1〉 × 〈1, 0,−1〉. Use the dot product to check that the cross
product is orthogonal to both factors.
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Theorem: |~v × ~w| is the area of the parallelogram with sides ~v and ~w.

Theorem:
~v × ~w = −(~w × ~v)

t(~v × ~w) = t~v × ~w = ~v × t~w

~v × (~w + ~u) = (~v × ~w) + (~v × ~u)

~v × (~w × ~u) = (~v · ~u)~w − (~v · ~w)~u

Definition: The triple product of ~v = 〈v1, v2, v3〉, ~w = 〈w1, w2, w3〉, and ~u = 〈u1, u2, u3〉,
in that order, is

~v · (~w × ~u) = (~v × ~w) · ~u =

∣∣∣∣∣∣
v1 v2 v3
w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣ .
Theorem: The absolute value of the triple product of ~v, ~w, and ~u is the volume of the

parallelepiped with edges ~v, ~w, and ~u.
The triple product is positive if ~v, ~w, and ~u are oriented according to the right hand rule

in the same way as î, ĵ, and k̂ (or as ~v, ~w and ~v× ~w). It is negative if they have the opposite
orientation.

(This is related to some of the ways in which determinants are useful.)

Example: What does it mean geometrically if ~v × ~w = ~0?

If |~v × ~w| = |~v| |~w|?

If ~v · (~w × ~u) = 0?

If |~v · (~w × ~u)| = |~v| |~w| |~u|?

Is it always true that |~v · (~w × ~u)| ≤ |~v| |~w| |~u|? Why or why not?

5



A plane contains the triangle with corners (1, 1, 1), (1, 2, 3), and (2, 2,−1).
Find two vectors parallel to the plane but not parallel to each other.

Find a vector perpendicular to the plane. (Hint: Use the cross product.)
(We will see next time that if you know a point on a plane and a vector perpendicular to

the plane, you can write down the equation of the plane, so this is a useful thing to be able
to do.)

Find the volume of the parallelepiped with edges
〈1, 2, 1〉 , 〈−1, 0, 1〉 , 〈1, 1, 2〉.
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Use the algebraic rules for dot products and cross products (for example, the distributive
law ~v× (~w+ ~u) = (~v× ~w) + (~v× ~u)) to show that the triple product of ~v, ~w, and s~v + t~w is
always zero, for any vectors ~v and ~w and any scalars s and t.

Now use geometric reasoning to show the same thing.
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Example (from last time):

1. What does it mean geometrically if

(~v + ~w) · (~v − ~w) = 0?

It means that ~v + ~w and ~v − ~w are perpendicular to each other.

By the parallelogram laws for addition and subtraction of vectors, this means the
diagonals of the parallelogram whose edges are ~v and ~w are perpendicular to each
other.

2. Use the basic facts about dot products to show that

(~v + ~w) · (~v − ~w) = |~v|2 − |~w|2

First use the distributive laws for the dot product:

(~v + ~w) · (~v − ~w) = ~v · (~v − ~w) + ~w · (~v − ~w) = ~v · ~v − ~v · ~w + ~w · ~v − ~w · ~w

Now use the commutative law for the dot product:

~v · ~v−~v · ~w + ~w · ~v − ~w · ~w = ~v · ~v−~v · ~w + ~v · ~w − ~w · ~w = ~v · ~v − ~w · ~w

Finally, use the fact that ~a · ~a = |~a|2:

~v · ~v − ~w · ~w = |~v|2 − |~w|2

3. Use (1) and (2) to derive a theorem about the diagonals of a parallelogram.

Theorem: The diagonals of a parallelogram are perpendicular if and only if the edges
of the parallelogram have the same length.

Proof: Let ~v and ~w be the edges of the parallelogram. By (1), the diagonals are
perpendicular if and only if (~v + ~w) · (~v − ~w) = 0. By (2) this is true if and only if
|~v|2 − |~w|2 = 0; that is, if and only if |~v|2 = |~w|2. Since the norm of a vector is never
negative, this happens if and only if |~v| = |~w|; that is, if and only if the edges of the
parallelogram have the same length.
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