Math 8 Winter 2020 Section 1 February 7, 2020

First, some important points from the last class:

Definition: A vector parametric equation for the line parallel to vector $\vec{v} = \langle x_v, y_v, z_v \rangle$ passing through the point (x_0, y_0, z_0) with position vector $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle$ is

$$\vec{r} = \vec{r_0} + t\vec{v}, \text{ or }$$

$$\langle x,y,z\rangle = \langle x_0,y_0,z_0\rangle + t \, \langle x_v,y_v,z_v\rangle \, .$$

Scalar parametric equations for this line are

$$x = x_0 + tx_v$$
 $y = y_0 + ty_v$ $z = z_0 + tz_v$.

Definition: A vector equation for the plane perpendicular to the vector $\vec{n} = \langle a, b, c \rangle$ containing the point (x_0, y_0, z_0) with position vector $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle$ is

$$\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$$

The scalar (linear) equation is:

$$ax + by + cz = ax_0 + by_0 + cz_0$$

Note: From a linear equation ax + by + cz = d for a plane, you can read off the normal vector $\vec{n} = \langle a, b, c \rangle$.

Definition: A vector parametric equation for the plane containing the point with position vector \vec{r}_0 and parallel to both vectors \vec{v} and \vec{w} (which are not parallel to each other) is

$$\vec{r} = \vec{r}_0 + t\vec{v} + s\vec{w}$$
.

Definition: Planes are called parallel if they have parallel normal vectors.

The angle between two planes is the acute angle between their normal vectors.

Preliminary Homework Assignment

In a previous homework assignment, you showed the following:

Suppose an object starts at point (a, b, c) and moves with constant velocity $\vec{v} = \langle v_x, v_y, v_z \rangle$ for t seconds.

Then its final position is $(a + v_x t, b + v_y t, c + v_z t)$.

We can express this by a function whose domain is the real number line \mathbb{R} and whose range lies in the three-dimensional space \mathbb{R}^3 ,

$$\vec{f}(t) = (a + v_x t, b + v_y t, c + v_z t),$$

where t represents time, with t = 0 being the starting time, and $\vec{f}(t)$ is the object's position vector at time t.

Another object is traveling clockwise around the unit circle $x^2 + y^2 = 1$ in the plane \mathbb{R}^2 . At time t = 0 it is at the point (1,0), and it travels at constant speed, making one complete trip around the circle in 2π units of time.

- 1. What is the angle between the object's position vector and the positive x-axis when t=.25?
 - .25. (When $t=2\pi$ it has completed one circle, through an angle of 2π , so generally $\theta=t$.)
- 2. At what time t > 0 is the angle between the object's position vector and the positive x-axis first equal to $\frac{4\pi}{3}$?

$$t = \frac{4\pi}{3}$$

3. What is the angle $\theta(t)$ between the object's position vector and the positive x-axis at time t?

$$\theta(t) = t$$
.

4. What is the object's position vector $\vec{f}(t)$ at time t? $\langle \cos(t), \sin(t) \rangle$.

A vector valued function $\vec{r}(t)$ is a function that takes a real number t to a vector $\vec{r}(t)$. If the range consists of vectors in \mathbb{R}^3 , for example, we write $\vec{r}: \mathbb{R} \to \mathbb{R}^3$. We may say " \vec{r} maps \mathbb{R} to \mathbb{R}^3 ."

$$\overrightarrow{r}$$
: \mathbb{R} \rightarrow \mathbb{R}^3 function contains domain contains range

Example: If $\vec{r}(t) = \langle \cos(t), \sin(t) \rangle$, then $\vec{r} : \mathbb{R} \to \mathbb{R}^2$.

The domain of \vec{r} is \mathbb{R} and the range of \vec{r} is the unit circle in \mathbb{R}^2

You may recall that for $f: \mathbb{R} \to \mathbb{R}$ we say:

 $\lim_{x\to a} f(x) = L$ means for every $\varepsilon > 0$ [desired output accuracy] there is a $\delta > 0$ [required input accuracy] such that, for every x,

$$\underbrace{|x-a| < \delta \& x \neq a}_{\text{within input accuracy}} \implies \underbrace{|f(x)-L| < \varepsilon}_{\text{within output accuracy}}.$$

If $\vec{r}: \mathbb{R} \to \mathbb{R}^n$, we say something very similar:

Definition: $\lim_{t\to a} \vec{r}(t) = \vec{L}$ means for every $\varepsilon > 0$ [desired output accuracy] there is a $\delta > 0$ [required input accuracy] such that, for every t,

$$\underbrace{|t-a|}_{\text{within input accuracy}} < \delta \ \& \ t \neq a \implies \underbrace{|\vec{r}(t) - \vec{L}|}_{\text{within output accuracy}} < \varepsilon \,.$$

This is also like our definition of limit of a sequence, if you stretch your imagination to say "large" means "approximately infinity," and "greater than N" means "approximately infinity, to within a given accuracy."

 $\lim_{n\to\infty} a_n = L$ means for every $\varepsilon > 0$ [desired output accuracy] there is an N [required input accuracy] such that, for every n,

$$\underbrace{n > N}_{\text{within input accuracy}} \implies \underbrace{|a_n - L| < \varepsilon}_{\text{within output accuracy}}.$$

(Note, we don't have to say " $n > N \& n \neq \infty$," because n denotes a natural number, and ∞ is not a natural number.)

In practice, we don't often use this formal definition of limit to compute limits, although we may use it to prove things.

Theorem: If
$$\vec{r}(t) = \langle r_x(t), r_y(t), r_z(t) \rangle$$
, then

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} r_x(t), \lim_{t \to a} r_y(t), \lim_{t \to a} r_z(t) \right\rangle.$$

Example:

$$\lim_{t \to 0} \left\langle \frac{\sin^2 t}{t}, \frac{\tan (\theta + t) - \tan \theta}{t} \right\rangle =$$

$$\left\langle \lim_{t \to 0} \frac{\sin^2 t}{t}, \lim_{t \to 0} \frac{\tan (\theta + t) - \tan (\theta)}{t} \right\rangle =$$

$$\left\langle \lim_{t \to 0} \frac{2 \sin t \cos t}{1}, \frac{d}{d\theta} \tan(\theta) \right\rangle = \left\langle 0, \sec^2 (\theta) \right\rangle.$$

Definition: A vector function $\vec{r}(t)$ is continuous at a if $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$.

Definition: If a curve γ is the range of a vector function \vec{r} , we say that \vec{r} parametrizes γ , or is a parametrization of γ . The t in $\vec{r}(t)$ is a parameter — different values of t give different points on γ . You can think of picking up the real number line or a part of it (the domain of \vec{r}), stretching, shrinking, and twisting it, and gluing it to γ , so $\vec{r}(t)$ is the place on γ where t on the number line is glued.

You can also think of $\vec{r}(t)$ as the position at time t of a point moving along γ .

Example: The function $\vec{r}(t) = \vec{r_0} + t\vec{v}$ parametrizes the line through $\vec{r_0}$ parallel to \vec{v} . To parametrize the entire line, our domain must be all of \mathbb{R} . If we think of \vec{r} as a position function, as t goes from $-\infty$ to ∞ , we traverse the entire line once.

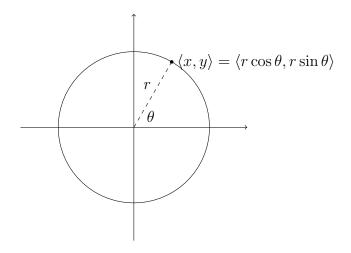
Example: The function $\vec{r}(t) = \langle a \cos(t), a \sin(t) \rangle$ parametrizes the circle in \mathbb{R}^2 with center (0,0) and radius a. To parametrize the entire circle, our domain could be $[0,2\pi]$. If we take our domain as \mathbb{R} , and think of \vec{r} as a position function, as t goes from $-\infty$ to ∞ , we traverse the circle repeatedly.

If we take our domain to be $[0, \pi]$, we parametrize the top half of the circle.

Note: Our parametrizations give a direction to the curve. In the above examples, the line is parametrized in the direction of \vec{v} , and the circle is parametrized in the counterclockwise direction. A curve with an assigned direction is an *oriented* curve. The unit circle can be oriented clockwise or counterclockwise.

We prefer our parametrizations to be continuous.

Example: The function $\vec{f}(\theta) = \langle r \cos \theta, r \sin \theta \rangle$ parametrizes the circle of radius r centered at (0,0) in \mathbb{R}^2 .



Note: The numbers (r, θ) are the *polar coordinates* of the point whose usual (rectangular, or Cartesian) coordinates are (x, y). In this example, r is constant but θ changes.

The distance from the origin to the point is r, and the angle around counterclockwise from the positive x-axis to the position vector of the point is θ . We can write

$$x = r\cos\theta$$
 $y = r\sin\theta$ $r = \sqrt{x^2 + y^2}$.

Example: Give parametrizations of the following curves:

1. The intersection of the paraboloid $z = x^2 + y^2$ and the plane x = 1.

2. The ellipse $x^2 + 4y^2 = 4$ in \mathbb{R}^2 .

3. The intersection of the sphere $x^2 + y^2 + z^2 = 4$ with the plane x = y + 1.

4. The intersection of the surfaces $x^4 + y^4 = 1$ and $z = y^2 - x^2$.

Example: Sketch and/or describe the curves parametrized by the following functions:

1.
$$\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$$
.

2.
$$\vec{r}(t) = \langle t, t, t^2 \rangle$$
.

Exercise: Parametrize and sketch the curve that lies in the cone $z = \sqrt{x^2 + y^2}$ and whose projection onto the xy-plane is parametrized by $\vec{r}(t) = \langle t \cos(t), t \sin(t) \rangle$ for $t \geq 0$.

Hint for sketch: First sketch the projection in the xy-plane.

Exercise: Sketch or completely describe the curve parameterized by the function

$$\vec{r}(t) = 2\cos(t) \left\langle \frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2} \right\rangle + 2\sin(t) \left\langle \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0 \right\rangle.$$
 You may notice that $\left\langle \frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2} \right\rangle$ and $\left\langle \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0 \right\rangle$ are unit vectors and are perpendicular to each other.

Some exercises from last time:

Exercise: Find a linear equation for the plane through the origin that is parallel to both the lines $\vec{r} = \langle -1, -2, 1 \rangle + t \langle 1, -1, 0 \rangle$ and $\vec{r} = \langle 1, 0, 1 \rangle + t \langle 1, 1, -1 \rangle$.

Remark: The vectors $\langle 1, -1, 0 \rangle$ and $\langle 1, 1, -1 \rangle$ are parallel to the plane, so their cross product $\langle 1, 1, 2 \rangle$ is normal to the plane. The origin $\langle 0, 0, 0 \rangle$ is a point on the plane, so an equation for the plane is x + y + 2z = 0.

Exercise: Find the distance between the parallel planes

$$x + 2y - z = 4$$

$$2x + 4y - 2z = 4$$
.

Remark: You can find the distance from any point on one plane to the other plane, using either of the method we used to do a similar problem in class. You can also find the equation of a line ℓ normal to both planes, say a line through the origin. The (perpendicular) distance between the planes is the distance between the points where ℓ intersects the planes; we saw in class how to find the point where a line intersects a plane. These points are $\langle \frac{2}{3}, \frac{4}{3}, \frac{-2}{3} \rangle$ and $\langle \frac{1}{3}, \frac{2}{3}, \frac{-1}{3} \rangle$, and the distance between them is $\sqrt{\frac{2}{3}}$.

Exercise: Does the line through the points (7,9,3) and (-2,-3,0) intersect the line through the points (2,2,3) and (0,0,-1)?

Remark: You can use any of the methods given in the problem. The lines do intersect, at the point (1,1,1).

Exercise: Find the distance between the skew lines (lines that are not parallel but do not meet) $\vec{r} = \langle -1, -2, 1 \rangle + t \langle 1, -1, 0 \rangle$ and $\vec{r} = \langle 1, 0, 1 \rangle + t \langle 1, 1, -1 \rangle$.

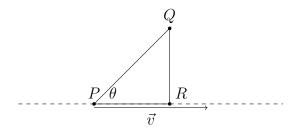
Remark: A method other than the one mentioned in the problem: Find a vector \vec{n} normal to both lines. (Take the cross product of vectors parallel to the lines.) The plane π_1 with normal vector \vec{n} containing the first line (use any point on the line as a point on the plane), and the plane π_2 with normal vector \vec{n} containing the second line, are two parallel planes. The distance

between π_1 and π_2 is the distance between the lines, and we know how to find the distance between two planes. This distance is $\frac{4}{\sqrt{6}}$.

Remark: Do not try to memorize the various formulas for the distances between a point and a line, between a point and a plane, between two lines, between a line and a plane, between two planes. If you need to find the distance between a point and a line, for example, you should be able to figure it out. (See the next problem.)

Exercise: Think of at least two methods to find the distance between a point and a line (in three dimensions).

This picture may suggest one method. We want to find the distance between the point Q and the line through point P in the direction of vector \vec{v} .



Here we know the points P and Q and the vector \vec{v} . The pictured triangle has a right angle at R. We want the distance between Q and R. We do not know the point R.

Some Solutions: (There are probably still more.)

Method 1: The vector \overrightarrow{PR} is the projection of \overrightarrow{PQ} along the vector \overrightarrow{v} . Use this to find \overrightarrow{PR} . Find \overrightarrow{RQ} as $\overrightarrow{PQ} - \overrightarrow{PR}$. The distance we want is the magnitude of \overrightarrow{RQ} .

Method 2: The distance between P and R is the absolute value of the component of \overrightarrow{PQ} along \overrightarrow{v} . Find this, and find the distance between P and Q. Use the Pythagorean Theorem to find the distance between Q and R.

Method 3: The distance we want is $|\overrightarrow{PQ}| \sin \theta$, which equals $|\overrightarrow{PQ} \times \overrightarrow{v}|$.

Method 4: If we say \vec{p} is the position vector of P, then a point on ℓ is $\vec{p} + t\vec{v}$. Define the function f(t) to be the distance between Q and $\vec{p} + t\vec{v}$; use the coordinates of P, Q, and \vec{v} to find an expression for f(t). Then use calculus to find the minimum value of f(t). This uses the fact that R is the point on ℓ that is closest to Q.

Method 5: The point R is the point on ℓ satisfying $\overrightarrow{PR} \cdot \overrightarrow{RQ} = 0$. Use the coordinates of P, Q, and \vec{v} , and the expression $R = \vec{p} + t\vec{v}$, to rewrite $\overrightarrow{PR} \cdot \overrightarrow{RQ} = 0$ as a linear equation with variable t, and solve for t. Plugging in to $R = \vec{p} + t\vec{v}$ gives R. Now find the distance between R and Q.

Method 6: A different way to find R is to find an equation for the plane π that contains Q and is normal, or perpendicular, to ℓ . The point R is the point where ℓ and π intersect.

Method 7: (This is one you don't yet have the tools for. You can acquire those tools in a more advanced math class, such as linear algebra, or in some physics, engineering, or computer science classes.) Apply a transformation T that rotates around the origin to make \vec{v} parallel to the x-axis. In the transformed picture, T(R) has the same y- and z-coordinates as T(P), and the same x-coordinate as T(Q), so we know all three points.