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First, some important points from the last class:

Definition: If a curve γ has a regular parametrization ~r : [a, b] → Rn that does not
retrace any portion of γ, then the arc length of γ is

L =

∫ b

a

|~r ′(t)| dt.

The arc length function is the function that takes t to the arc length of the portion of γ
between ~r(a) and ~r(t):

s(t) =

∫ t

a

|~r ′(u)| du.

The parametrization of γ by arc length is the function that takes a number s to the point
on γ that is a distance of s units along γ from the starting point ~r(a).

Compute this by using the arc length function (expressing s as a function of t) to instead
express t as a function of s, say t = f(s), then rewriting the expression ~r(t) by rewriting t
in terms of s, that is, by setting ~p(s) = ~r(f(s)).

Definition: The curvature of a curve γ with regular parametrization ~r at a point ~r(t) is

the magnitude of the rate of change of the unit tangent vector ~T with respect to arc length,

κ =

∣∣∣∣∣d~Tds
∣∣∣∣∣ =

1∣∣ds
dt

∣∣
∣∣∣∣∣d~Tdt

∣∣∣∣∣ .
A curve of curvature κ bends as much as a circle of radius

1

κ
.

Theorem: The arc length and curvature of a curve can be computed using any regular
parametrization, and the answer will be the same.

We say arc length and curvature do not depend on the parametrization.

By an earlier theorem, because |~T | is constant, we have
d~T

dt
⊥ ~T . We define the unit

normal vector ~N to be the unit vector in this direction, which points in the direction in
which the curve bends:

~N =
1∣∣∣d~Tdt ∣∣∣

d~T

dt

d~T

dt
=

∣∣∣∣∣d~Tdt
∣∣∣∣∣ ~N
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Analyzing acceleration:

Given the position ~r of an moving object as a function of the time t, we can compute:

~v =
d~r

dt
= velocity

ds

dt
= |~v| = speed ~v = |~v| ~T =

ds

dt
~T

~T =
1
ds
dt

~v = unit tangent vector =

unit vector in direction of motion

κ =

∣∣∣∣∣d~Tds
∣∣∣∣∣ =

1
ds
dt

∣∣∣∣∣d~Tdt
∣∣∣∣∣ =

curvature ~a =
d~v

dt
= acceleration

~N =
1∣∣∣d~Tdt ∣∣∣

d~T

dt
= unit normal vector

d~T

dt
=

∣∣∣∣∣d~Tdt
∣∣∣∣∣ ~N

Using the product rule, we can write

~a =
d~v

dt
=

d

dt

(
ds

dt
~T

)
=

(
d

dt

ds

dt

)
~T +

ds

dt

d~T

dt
=

(
d2s

dt2

)
︸ ︷︷ ︸

aT

~T +
ds

dt

∣∣∣∣∣d~Tdt
∣∣∣∣∣︸ ︷︷ ︸

aN

~N

The acceleration ~a is expressed as the sum of two parts, one in the direction of motion, and
one normal (perpendicular) to the direction of motion.

The scalar aT is the tangential component of the acceleration. It equals
d2s

dt2
, the second

derivative of distance with respect to time. We may call
d2s

dt2
the linear acceleration. The

tangential part of acceleration aT ~T , is the part of acceleration in the direction of motion, or
the projection of acceleration in the direction of ~T .

The scalar aN is the normal component of the acceleration. It equals

ds

dt

∣∣∣∣∣d~Tdt
∣∣∣∣∣ =

ds

dt

∣∣∣∣∣dsdt d~Tds
∣∣∣∣∣ =

(
ds

dt

)2
∣∣∣∣∣d~Tds

∣∣∣∣∣ =

(
ds

dt

)2

κ,

the speed squared times the curvature. The normal part of acceleration aN ~N , is the part
of acceleration perpendicular to the direction of motion, or the projection of acceleration in
the direction of ~N .
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~a =

tangential part︷ ︸︸ ︷(
d2s

dt2

)
︸ ︷︷ ︸

aT

~T +

normal part︷ ︸︸ ︷((
ds

dt

)2

κ

)
︸ ︷︷ ︸

aN

~N
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~a =

tangential part︷ ︸︸ ︷(
d2s

dt2

)
︸ ︷︷ ︸

aT

~T +

normal part︷ ︸︸ ︷((
ds

dt

)2

κ

)
︸ ︷︷ ︸

aN

~N

We sometimes write aT ~T = ~aT and aN ~N = ~aN.

~a =

(
d2s

dt2

)
~T︸ ︷︷ ︸

~aT tangential part

+

((
ds

dt

)2

κ

)
~N︸ ︷︷ ︸

~aN normal part

The tangential part ~aT reflects changing speed, and the normal part ~aN reflects changing
direction.

If an object is moving around a circle of radius R at speed V , we have κ =
1

R
, and the

normal part of acceleration, also called the centripetal acceleration, has magnitude(
ds

dt

)2

κ =
V 2

R
.

If our moving object has mass m, we may divide the force m~a acting on the object
into two parts: maT ~T acts to change the speed, and maN ~N acts to change the direction of
motion.

If the object is moving along a circle, we may call these the linear force and the centripetal

force. The magnitude of the centripetal force is
mV 2

R
.
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Example: Use this analysis of acceleration to find the curvature of the parabola y = x2

at the point (0, 0).

Parametrize the parabola and compute the components of acceleration at our point:

~r =
〈
t, t2
〉

~v = 〈1, 2t〉 ds

dt
= |~v| =

√
4t2 + 1 ~a = 〈0, 2〉

At the point (0, 0) we have t = 0, so

~r = 〈0, 0〉 ~v = 〈1, 0〉 ds

dt
= 1 ~a = 〈0, 2〉

Now find aN, the component of acceleration normal to the direction of motion, or to ~v. In
general, we can find aT ~T as the vector projection of ~a in the direction of ~v, and then set
aN ~N = ~a− aT ~T . In this case,

aT ~T =
~a · ~v
~v · ~v

~v =
0

~v · ~v
~v = 〈0, 0〉

aN ~N = ~a− aT ~T = 〈0, 2〉 − 〈0, 0〉 = 〈0, 2〉

2 = |aN ~N | = aN =

(
ds

dt

)2

κ = (1)2κ = κ

The circle of radius
1

2
with center

(
0,

1

2

)
is tangent to the parabola at (0, 0), has the

same curvature, and has the same unit normal vector. It is called the osculating circle to
the parabola at (0, 0).

Figure 1: A black parabola and some semicircles. The red one is osculating.
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Another way to derive our earlier formula for curvature:

~a = aT ~T + aN ~N

~v × ~a = ~v ×
(
aT ~T + aN ~N

)
=
(
~v × aT ~T

)
+
(
~v × aN ~N

)
When is the cross product of two vectors equal to ~0? When then are parallel.

~v × ~a =
(
~v × aN ~N

)
If two vectors are perpendicular, what is the magnitude of their cross product? The product
of their magnitudes.

|~v × ~a| = |~v| |aN| =
(
ds

dt

)(
ds

dt

)2

κ =

(
ds

dt

)3

κ

κ =
|~v × ~a|(

ds
dt

)3
Example: Use this to find the curvature of the parabola y = x2 at the point (0, 0).

View the parabola as contained in the plane z = 0 in R3. (This is important. We can only
take cross products in R3.) Parametrize it and compute the velocity, speed, and acceleration
at our point:

~r =
〈
t, t2, 0

〉
~v = 〈1, 2t, 0〉 ds

dt
= |~v| =

√
4t2 + 1 ~a = 〈0, 2, 0〉

At the point (0, 0, 0) we have t = 0, so

~r = 〈0, 0, 0〉 ~v = 〈1, 0, 0〉 ds

dt
= 1 ~a = 〈0, 2, 0〉

Now when t = 0 we get

κ =
|~v × ~a|(

ds
dt

)3 =
| 〈1, 0, 0〉 × 〈0, 2, 0〉 |

1
= | 〈0, 0, 2〉 | = 2.
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Example: A projectile is to be fired from ground level at an angle α above the horizontal.
How fast must it be fired in order for it to go 100 meters before it hits the ground? Ignore
forces other than the force of gravity.

Set this problem in the xy-plane with y being vertical. The force acting on our object
is the force of gravity, 〈0,−mg〉. (All the units here are SI units.) We use Newton’s second
law, force equals mass times acceleration,

〈0,−mg〉 = m~a ~a = 〈0,−g〉.

This is the acceleration of the object at all times.
Assume we fire the projectile from the origin, so initial position is ~r(0) = 〈0, 0〉. If we

fire toward the positive x direction, at an angle α above the x-axis and at an initial speed
of V meters per second, the initial velocity is ~v(0) = 〈V cosα, V sinα〉.

Now we use these facts, and some antidifferentiation:

~a(t) = 〈0,−g〉

~v(t) = 〈0,−gt〉+ ~C

~v(0) = 〈0, 0〉+ ~C = 〈V cosα, V sinα〉

We use this to find ~C = 〈V cosα, V sinα〉.

~v(t) = 〈V cosα, V sinα− gt〉

~r(t) = 〈(V cosα)t, (V sinα)t− g

2
t2〉+ ~D

We use ~r(0) = 〈0, 0〉 to solve for ~D, and we get

~r(t) = 〈(V cosα)t, (V sinα)t− g

2
t2〉

The projectile hits the ground when the y-coordinate equals 0, which it does initially (at

t = 0), and when V sinα =
g

2
t, or t =

2V sinα

g
. The distance the projectile travels is the

x-coordinate at this time, which is (V cosα)
2V sinα

g
=

2V 2 cosα sinα

g
. For this to equal

100, we must have

2V 2 cosα sinα

g
= 100 V =

√
50g

cosα sinα
.

Note: You can read in the textbook the proof that a projectile fired at a given speed

will go farthest if the angle α is
π

4
. If we choose this angle, then our required initial speed is

V =

√
50g

cosα sinα
=
√

100g = 10
√
g.
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Exercise: Parametrize the intersection of the elliptical cone z2 = x2+4y2 with the plane
z = 2.

Write down an integral representing the arc length of this curve. (Do not try to evaluate
this integral.)

If an object travels along the curve with position function given by the parametrization
you chose, find the tangential and normal components of the object’s acceleration, and the
curvature of the curve, at the points (2, 0, 2) and (0, 1, 2). Use geometrical reasoning if you
can.

(Hint: You’re only interested in two points here, so don’t do everything in full generality.)
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Example: γ is the intersection of the plane x − y = 2 with the surface z = x2 + y2,
oriented in the direction of increasing x-coordinate. (That means this is the direction of
motion.) Find the unit tangent vector, unit normal vector, and curvature at any point.

First, to parametrize. Since y = x− 2, we have

z = x2 + (x− 2)2 = x2 + x2 − 4x+ 4 = 2x2 − 4x+ 2 + 2 = 2(x− 1)2 + 2.

Now we set x = t (so as t increases we go in the direction of increasing x), and parametrize:

~r =
〈
t, t− 2, 2(t− 1)2 + 2

〉
~v = 〈1, 1, 4(t− 1)〉 ~a = 〈0, 0, 4〉

ds

dt
= |~v| =

√
16(t− 1)2 + 2

~T =

〈
1√

16(t− 1)2 + 2
,

1√
16(t− 1)2 + 2

,
4(t− 1)√

16(t− 1)2 + 2

〉
As ~aT is the projection of ~a in the direction of ~v, we have

~aT =
~a · ~v
~v · ~v

~v =
16(t− 1)

16(t− 1)2 + 2
〈1, 1, 4(t− 1)〉 =

〈
16(t− 1)

16(t− 1)2 + 2
,

16(t− 1)

16(t− 1)2 + 2
,

64(t− 1)2

16(t− 1)2 + 2

〉

~aN = ~a− ~aT =

〈
− 16(t− 1)

16(t− 1)2 + 2
, − 16(t− 1)

16(t− 1)2 + 2
, 4− 64(t− 1)2

16(t− 1)2 + 2

〉
=〈

− 16(t− 1)

16(t− 1)2 + 2
, − 16(t− 1)

16(t− 1)2 + 2
,

64(t− 1)2 + 8− 64(t− 1)2

16(t− 1)2 + 2

〉
=

8

16(t− 1)2 + 2
〈−2(t− 1),−2(t− 1), 1〉

~N is the unit vector in the direction of ~aN, so

~N =
1√

8(t− 1)2 + 1
〈−2(t− 1),−2(t− 1), 1〉

κ =
|~v × ~a|(

ds
dt

)3 =
| 〈1, 1, 4(t− 1)〉 × 〈0, 0, 4〉 |

(16(t− 1)2 + 2)
3
2

=
| 〈4,−4, 0〉 |

(16(t− 1)2 + 2)
3
2

=
2
√

2

(16(t− 1)2 + 2)
3
2

We can replace t with x to find ~T , ~N , and κ in terms of the coordinates of a point on γ.
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