Math 8
Winter 2020
Section 1
February 24, 2020

First, some important points from the last class:
Definition: The partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{0}, y_{0}\right)$ is the derivative of the function of x we get by setting y to have constant value y_{0} :

$$
\begin{gathered}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=D_{x} f\left(x_{0}, y_{0}\right)=\left.\frac{d}{d x}\left(f\left(x, y_{0}\right)\right)\right|_{x=x_{0}}= \\
\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} .
\end{gathered}
$$

Geometrically, this is the slope (vertical rise over horizontal run, treating the z-axis as vertical) of the tangent line to the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$) in the plane $y=y_{0}$.

The second partial derivatives of f include

$$
\begin{aligned}
f_{x x} & =\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
f_{x y} & =\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
\end{aligned}
$$

Theorem (Clairaut's theorem): If suitable hypotheses hold, the corresponding mixed second partial derivatives of a function are always equal. That is,

$$
f_{x y}=f_{y x} \quad f_{x z}=f_{z x} \quad f_{y z}=f_{z y}
$$

Example: Find an equation for the tangent plane to the graph of the function

$$
f(x, y)=x^{2} y^{2}
$$

at the point $(1,3,9)$.
The partial derivatives of f at that point are

$$
\begin{gathered}
\frac{\partial f}{\partial x}(1,3)=\left.\left(2 x y^{2}\right)\right|_{(x, y)=(1,3)}=18 \\
\frac{\partial f}{\partial y}(1,3)=\left.\left(2 x^{2} y\right)\right|_{(x, y)=(1,3)}=6
\end{gathered}
$$

Vectors in the direction of the lines tangent to the graph of f at that point in vertical planes:

$$
\begin{array}{ll}
x=1: & \left\langle 0,1, \frac{\partial f}{\partial y}(1,3)\right\rangle=\langle 0,1,6\rangle \\
y=3: & \left\langle 1,0, \frac{\partial f}{\partial x}(1,3)\right\rangle=\langle 1,0,18\rangle
\end{array}
$$

Vector normal to both tangent lines:

$$
\langle 0,1,6\rangle \times\langle 1,0,18\rangle=\langle 18,6,-1\rangle
$$

Equation of plane containing both tangent lines (containing point $(1,3,9)$ and normal to the vector $\langle 18,6,-1\rangle)$:

$$
\begin{gathered}
\langle x-1, y-3, z-9\rangle \cdot\langle 18,6,-1\rangle=0 \\
18(x-1)+6(y-3)-(z-9)=0 \\
\underbrace{(z-9)}_{\Delta z}=\underbrace{18}_{\frac{\partial z}{\partial x}} \underbrace{(x-1)}_{\Delta x}+\underbrace{6}_{\frac{\partial z}{\partial y}} \underbrace{(y-3)}_{\Delta y} \\
z=18(x-1)+6(y-3)+9 \\
z=\left(\frac{\partial f}{\partial x}(1,3)\right) \underbrace{(x-1)}_{\Delta x}+\left(\frac{\partial f}{\partial y}(1,3)\right) \underbrace{(y-3)}_{\Delta y}+f(1,3)
\end{gathered}
$$

Theorem: If the graph of f has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, its equation is

$$
z=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Theorem: (the same theorem rephrased) If the graph of f has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, it is the graph of the function

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

Definition: The function

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is called the linearization of f at $\left(x_{0}, y_{0}\right)$. We may also call it a linear approximation or a tangent approximation.

For (x, y) near $\left(x_{0}, y_{0}\right)$, we have $f(x, y) \approx L(x, y)$. Setting $x=x_{0}+\Delta x$ and $y=y_{0}+\Delta y$ (so $x-x_{0}=\Delta x$ and $y-y_{0}=\Delta y$), when Δx and Δy are small, we can write

$$
\begin{gathered}
f(x, y) \approx L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) \\
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)(\Delta x)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)(\Delta y)+f\left(x_{0}, y_{0}\right) \\
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right) \approx\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)(\Delta x)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)(\Delta y) \\
\Delta z \approx \frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y .
\end{gathered}
$$

The differential is

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y, \quad \text { or } \quad d z=\underbrace{\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y}_{\text {One piece for each input variable! }} .
$$

Everything works the same for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, or, for that matter, for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Warning: The fact that f has partial derivatives at a point is not enough to guarantee that its graph has a tangent plane there. Here are two pictures of the graph of the function

$f(x, y)=\frac{2 x y}{\sqrt{x^{2}+y^{2}}}$ (setting $f(0,0)=0$, to make f defined and continuous everywhere). The red lines are the intersections of the graph of f with the planes $x=0$ and $y=0$. Both are horizontal, so $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. The yellow \vee is the intersection of the graph of f with the plane $x=y$. It is pointed at the origin, and does not have a tangent line there, so the graph of f has no tangent plane at $(0,0)$.

We do, however, have this useful theorem:
Theorem: If the partial derivatives of $f(x, y)$ are defined near $\left(x_{0}, y_{0}\right)$ and continuous at $\left(x_{0}, y_{0}\right)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$.

Defined near $\left(x_{0}, y_{0}\right)$ means there is some (possibly tiny) disc with center $\left(x_{0}, y_{0}\right)$ such that the partial derivatives are defined at all points inside the disc. If this disc has radius δ, it may be called the δ-neighborhood of $\left(x_{0}, y_{0}\right)$. Some books, instead of defined near $\left(x_{0}, y_{0}\right)$, may say defined in some neighborhood of $\left(x_{0}, y_{0}\right)$.

You can compute the partial derivatives of the function f pictured above, and check that although they are defined everywhere, they are not continuous at $(0,0)$.

Example: Show that

$$
f(x, y, z)=x y z
$$

is differentiable at the point $(1,2,1)$, and then use the linear approximation to f to approximate the product of the three numbers $1.01,1.98$, and .99 .

The partial derivatives of f are

$$
\frac{\partial f}{\partial x}(x, y, z)=\quad \frac{\partial f}{\partial y}(x, y, z)=\quad \frac{\partial f}{\partial z}(x, y, z)=
$$

They are defined and continuous everywhere (because they are polynomials), so by the theorem, f is differentiable everywhere.

For small values of $\Delta x, \Delta y$, and Δz, we can say

$$
f(1+\Delta x, 2+\Delta y, 1+\Delta z) \approx
$$

Example: Find an equation for the tangent plane to the sphere

$$
x^{2}+y^{2}+z^{2}=169
$$

at the point $(3,4,12)$.

Example: Use differentials to approximate the volume of metal in a cylindrical can of height 6 inches and radius 2 inches, if the top and bottom of the can are .006 inches thick, and the curved sides are .004 inches thick.

We can express volume as a function of height and radius as

$$
V=\pi r^{2} h
$$

We want the difference in volume between the inside and outside of the can, so we are looking for ΔV when $\Delta r=.004$ and $\Delta h=.012$, given $r \approx 2$ and $h \approx 6$. We have

$$
\begin{gathered}
d V=\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h \\
d V=(2 \pi r h) d r+\left(\pi r^{2}\right) d h \\
\Delta V \approx(2 \pi r h) \Delta r+\left(\pi r^{2}\right) \Delta h .
\end{gathered}
$$

Plugging everything in:

$$
\Delta V \approx(2 \pi(2)(6))(.004)+\left(2 \pi(2)^{2}\right)(.012)=(.192) \pi
$$

The can contains approximately $.192 \pi$ cubic inches of metal.

Exercise: The temperature at point (x, y, z) (where distances are in meters) is given by the function $f(x, y, z)=x^{2}+2 y^{2}+z^{4}$ (in degrees Celsius).

What are the units of $\frac{\partial f}{\partial x}$? \square
Find the linearization of the function f at the point $(1,1,1)$.

The differential $d f$ of the function f is given by

$$
d f=\square
$$

Suppose that points P and Q are both near the point $(1,1,1)$, and the displacement from P to Q is $\overrightarrow{P Q}=\langle .01, .02,-.02\rangle$. Use differentials to approximate the change in temperature when moving from point P to point Q.

Exercise: Use implicit differentiation to find the partial derivatives of z with respect to x and with respect to y on the ellipsoid

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{25}=3
$$

at the point $(3,4,5)$. Then find an equation for the tangent plane to the ellipsoid at that point.

Use the linear approximation to approximate the z-coordinate of a point on the ellipsoid whose x - and y-coordinates are 3.02 and 4.01 .

Exercise: Show that any function of the form

$$
f(x, y)=a e^{b x} \sin (b y)
$$

where a and b are constants, satisfies Laplace's equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Exercise: Check directly that Clairaut's Theorem holds of any function of the form

$$
f(x, y)=g(x) h(y),
$$

where g and h are differentiable functions. (Hint: If x is constant, then $g(x)$ is also constant.)

