Math 8
Fall 2019
Section 2
November 8, 2019

First, some important points from the last class:
Theorem: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function whose graph has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ (in other words, f is differentiable at $\left(x_{0}, y_{0}\right)$), then the tangent plane is the graph of the function

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

Theorem: If the partial derivatives of $f(x, y)$ are defined near $\left(x_{0}, y_{0}\right)$ and continuous at $\left(x_{0}, y_{0}\right)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$.

When f is differentiable at $\left(x_{0}, y_{0}\right)$, we can approximate $f(x, y)$ near $\left(x_{0}, y_{0}\right)$ by

$$
f(x, y) \approx L(x, y)
$$

This is called the linear approximation or tangent approximation to f near $\left(x_{0}, y_{0}\right)$. The function $L(x, y)$ is called the linearization of f at $\left(x_{0}, y_{0}\right)$.

Definition: The differential of f is defined by

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

When f is differentiable, we can use the differential for making approximations:

$$
\Delta f \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y
$$

In the preliminary homework, we had that θ is a function of x and y, and x and y are functions of time t, and we wanted to find $\frac{d \theta}{d t}$ at a particular time t_{0}. Probably you solved for θ as a function of t and then took the derivative. Here is a different way to think about it:

Near the point $x=x_{0}, y=y_{0}, \theta=\theta_{0}$, we can approximate

$$
\theta \approx L(x, y)=\theta_{0}+\frac{\partial \theta}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial \theta}{\partial y}\left(y-y_{0}\right) .
$$

Notably, the function L has the same partial derivatives as θ at our point. Since L and θ are changing at the same rates, we can try using L to find the rate of change of θ with respect to t, at a time t_{0} at which $x=x_{0}$ and $y=y_{0}$:

$$
\begin{gathered}
\left.\frac{d \theta}{d t}\right|_{t=t_{0}}=\left.\frac{d}{d t}(\underbrace{\frac{\partial \theta}{\partial x}\left(x_{0}, y_{0}\right)}_{\text {constant }} \underbrace{\left(x-x_{0}\right)}_{x=x(t)}+\underbrace{\frac{\partial \theta}{\partial y}\left(x_{0}, y_{0}\right)}_{\text {constant }} \underbrace{\left(y-y_{0}\right)}_{y=y(t)})\right|_{t=t_{0}}=\frac{\partial \theta}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial \theta}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t}\left(t_{0}\right)= \\
\left\langle\frac{\partial \theta}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial \theta}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle \cdot\left\langle\frac{d x}{d t}\left(t_{0}\right), \frac{d y}{d t}\left(t_{0}\right)\right\rangle .
\end{gathered}
$$

Note, this works IF $\theta=f(x, y),\langle x, y\rangle=\vec{r}(t)$, and the function f is differentiable at $\left(x_{0}, y_{0}\right)=\vec{r}\left(t_{0}\right)$. (Of course \vec{r} must also be differentiable at t_{0}.) We may call the vector of the partial derivatives of f the total derivative of f and write it as f^{\prime} or as ∇f (the gradient of f). Then our formula becomes:

$$
(f \circ \vec{r})^{\prime}\left(t_{0}\right)=f^{\prime}\left(\vec{r}\left(t_{0}\right)\right) \cdot \vec{r}^{\prime}\left(t_{0}\right)=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) .
$$

Definition: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient of f is the vector whose components are its partial derivatives:

$$
\nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right\rangle
$$

If f is differentiable, we may also call ∇f the (total) derivative of f and write it f^{\prime}.
Theorem (the chain rule): If $\vec{r}(t)$ is differentiable at t_{0}, and $f(x, y, z)$ is differentiable at $\vec{r}\left(t_{0}\right)$, then

$$
\frac{d}{d t}(f(\vec{r}(t)))=f^{\prime}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)
$$

If you want to picture the chain rule geometrically, here is a way to think about it. Let $\vec{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the position function of a point moving in the $x y$-plane. Imagine the $x y$-plane sitting inside \mathbb{R}^{3}.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function whose graph is a surface S, so $f(x, y)$ is the height of the surface at (x, y). Now imagine a point moving on S directly above (or below) the moving point in the $x y$-plane. The height of that point at time t is given by the composition

$$
z=f(\vec{r}(t))=(f \circ \vec{r})(t)
$$

To find how fast this height is changing, we compute

$$
\frac{d z}{d t}=(f \circ \vec{r})^{\prime}(t)=f^{\prime}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)
$$

Example: Suppose a bug is crawling around the surface $z=x^{2}+y^{2}$, so that its shadow is moving in the $x y$-plane with (x, y)-coordinates at time t given by $\vec{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$. When the bug is at the point $(1,1,2)$, how fast is its height increasing?

The bug's height is $z=f(x, y)=x^{2}+y^{2}$ when its shadow has position (x, y), and the shadow's position at time t is $(x, y)=\vec{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$. When the bug is at $(1,1,2)$ we have $\vec{r}(t)=\langle 1,1\rangle$ and $t=1$. By the Chain Rule,

$$
\begin{gathered}
\frac{d z}{d t}=\frac{d}{d t}\left(f(\vec{r}(t))=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) .\right. \\
\vec{r}^{\prime}(t)=\left\langle 2 t, 3 t^{2}\right\rangle \quad \vec{r}^{\prime}(1)=\langle 2,3\rangle \quad \nabla f(x, y)=\langle 2 x, 2 y\rangle \quad \nabla f(1,1)=\langle 2,2\rangle \\
\left.\frac{d z}{d t}\right|_{t=1}=\nabla f(\vec{r}(1)) \cdot \vec{r}^{\prime}(1)=\nabla f(1,1) \cdot\langle 2,3\rangle=\langle 2,2\rangle \cdot\langle 2,3\rangle=10 .
\end{gathered}
$$

Theorem: (the chain rule): If $\vec{r}(t)$ is differentiable at t_{0}, and $f(x, y, z)$ is differentiable at $\vec{r}\left(t_{0}\right)$, then

$$
\frac{d}{d t}(f(\vec{r}(t)))=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)
$$

Rephrasing this, if w is a function of x, y, z, and x, y, z are all functions of t, then

$$
\begin{array}{r}
\frac{d w}{d t}=\left\langle\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
\Delta w \approx \frac{\partial w}{\partial x} \Delta x+\frac{\partial w}{\partial y} \Delta y+\frac{\partial w}{\partial z} \Delta z \approx \frac{\partial w}{\partial x} \frac{d x}{d t} \Delta t+\frac{\partial w}{\partial y} \frac{d y}{d t} \Delta t+\frac{\partial w}{\partial z} \frac{d z}{d t} \Delta t= \\
\left(\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}\right) \Delta t=\left(\frac{d w}{d t}\right) \Delta t
\end{array}
$$

Here's another way to envision the chain rule physically: Suppose (x, y, z) is the position of a moving object, and $w=f(x, y, z)$ is the temperature at point (x, y, z). To find the rate of change of the temperature of the moving object with respect to time, we have

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

We can approximate the change in temperature over a small interval of time Δt by

$$
\Delta w \approx \frac{\partial w}{\partial x} \underbrace{\frac{d x}{d t} \Delta t}_{\approx \Delta x}+\frac{\partial w}{\partial y} \underbrace{\frac{d y}{d t} \Delta t}_{\approx \Delta y}+\frac{\partial w}{\partial z} \underbrace{\frac{d z}{d t} \Delta t}_{\approx \Delta z}
$$

Example: If $w=x^{2} y^{2}, x=\sin (t)$, and $y=\cos (t)$, find $\frac{d w}{d t}$ at $t=\frac{\pi}{3}$.

$$
\begin{gathered}
t=\frac{\pi}{3} \quad x=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \quad y=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
\frac{\partial w}{\partial x}=2 x y^{2}=\frac{\sqrt{3}}{4} \quad \frac{\partial w}{\partial y}=2 x^{2} y=\frac{3}{4} \quad \frac{d x}{d t}=\cos (t)=\frac{1}{2} \quad \frac{d y}{d t}=-\sin (t)=-\frac{\sqrt{3}}{2} \\
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}=\left(\frac{\sqrt{3}}{4}\right)\left(\frac{1}{2}\right)+\left(\frac{3}{4}\right)\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\sqrt{3}}{4}
\end{gathered}
$$

The chain rule in different settings:

$$
\begin{gathered}
w=f(x)=f(g(t)) \\
t \rightarrow x \rightarrow w \\
\frac{d w}{d t}=\frac{d w}{d x} \frac{d x}{d t} \\
w=f(x, y, z)=f(\vec{g}(t)) \\
t \rightarrow(x, y, z) \rightarrow w \\
\frac{d w}{d t}=\underbrace{\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}}_{\text {one term for each intermediate variable }} \\
w=f(x, y, z)=f(G(s, t)) \\
\frac{\partial w, t) \rightarrow(x, y, z) \rightarrow w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \\
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}
\end{gathered}
$$

Example: We can identify points on the cone $x^{2}+y^{2}=z^{2}, z \geq 0$, using two coordinates, r and θ, by setting

$$
x=r \cos (\theta) \quad y=r \sin (\theta) \quad z=r \quad 0 \leq \theta \leq 2 \pi \quad 0 \leq r
$$

Define w on the cone by

$$
w=x y-x z^{2}
$$

Find $\frac{\partial w}{\partial r}$ at the point $(x, y, z)=(-2,0,2)$.
At the point $(x, y)=(-2,0)$ we have

$$
\begin{gathered}
r=2 \quad \theta=\pi \quad x=-2 \quad y=0 \quad z=2 \\
\frac{\partial w}{\partial x}=y-z^{2}=-4 \quad \frac{\partial w}{\partial y}=x=-2 \quad \frac{\partial w}{\partial z}=-2 x z=8 \\
\frac{\partial x}{\partial r}=\cos (\theta)=-1 \quad \frac{\partial y}{\partial r}=\sin (\theta)=0 \quad \frac{\partial z}{\partial r}=1
\end{gathered}
$$

We treat θ as a constant and differentiate with respect to r, using the chain rule:

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=(-4)(-1)+(-2)(0)+(8)(1)=12
$$

At a general point, we have

$$
\begin{gathered}
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=\left(y-z^{2}\right)(\cos (\theta))+(x)(\sin (\theta))+(-2 x z)(1)= \\
\left(r \sin (\theta)-r^{2}\right)(\cos (\theta))+(r \cos (\theta))(\sin (\theta))+\left(-2 r^{2} \cos (\theta)\right)(1)= \\
2 r \sin (\theta) \cos (\theta)-3 r^{2} \cos (\theta)
\end{gathered}
$$

What does this mean? We define w as a function of (r, θ) by looking at the point on the cone $(x, y, z)=$ $(r \cos (\theta), r \sin (\theta), r)$, then computing $w=x y-x z^{2}$. We want to know, when $(x, y)=(-2,0)$, the rate of change of w with respect to r.

For example, suppose w denotes the temperature at a given point on the cone. Consider the ubiquitous bug crawling on the cone, with its shadow moving in the $x y$-plane. The bug's temperature is w. When the bug's shadow is where $(r, \theta)=(2,-\pi)$, and the bug moves so its shadow's new location is where $(r, \theta)=(2+\Delta r,-\pi)$ (that is, θ remains constant and r changes by Δr), the bug's temperature will have changed by

$$
\Delta w \approx \frac{\partial w}{\partial r} \Delta r=12 \Delta r
$$

Recall implictly defined functions: An equation $f(x, y, z)=0$ defining a surface S can be thought of as implicitly defining z as a function of x and y near a point on S. If we want to find $\frac{\partial z}{\partial x}$ at that point, we can treat y as a constant and z as a function of x, and differentiate the equation wtih respect to x :

$$
\begin{gathered}
\frac{\partial}{\partial x}(f(x, y, z))=\frac{\partial}{\partial x}(0) \\
\frac{\partial f}{\partial x} \underbrace{\frac{\partial x}{\partial x}}_{=1}+\frac{\partial f}{\partial y} \underbrace{\frac{\partial y}{\partial x}}_{=0}+\frac{\partial f}{\partial z} \underbrace{\frac{\partial z}{\partial x}}_{\text {unknown }}=0 \\
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}=0 \\
\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}
\end{gathered}
$$

Theorem: (the implicit function theorem) If $f(x, y, z)=0$ implicitly defines z as a function of x and y, then

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}} .
$$

If $f(x, y)=0$ implicitly defines y as a function of x, then

$$
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

Example: Earlier, we looked at the surface

$$
a x^{2}+b y^{2}+c z^{2}=d
$$

and used implicit differentiation:

$$
\begin{gathered}
2 a x+2 c z \frac{\partial z}{\partial x}=0 \\
\frac{\partial z}{\partial x}=-\frac{a x}{c z}
\end{gathered}
$$

Now we can use the implicit function theorem:

$$
\begin{gathered}
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}-d \quad f(x, y, z)=0 \\
\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}=-\frac{2 a x}{2 c z}=-\frac{a x}{c z} .
\end{gathered}
$$

You do not have to memorize the implicit function theorem, but you may use it if you wish.

Exercise: A surface S has the equation $z=f(x, y)$. At $(x, y)=(1,2)$ we have

$$
z=45 \quad \frac{\partial z}{\partial x}=2 \quad \frac{\partial z}{\partial y}=1
$$

A bug is crawling on the surface S, and a light shining directly down through S (which is transparent) casts the bug's shadow on the $x y$-plane; the position of the shadow is $\vec{r}(t)$. At time t_{0}, the bug's shadow has position $\vec{r}\left(t_{0}\right)=\langle 1,2\rangle$ and velocity $\vec{r}^{\prime}\left(t_{0}\right)=\langle 3,-1\rangle$.

Use the chain rule to find the rate of change of the bug's altitude with respect to time at the time t_{0}.

Exercise: A radiation source at the origin subjects an object located at point (x, y, z) to radiation of intensity $I=\frac{k}{x^{2}+y^{2}+z^{2}}$, where k is a constant. At time $t=0$, an object located at point $(1,2,1)$ is moving toward the point $(4,6,13)$ at a speed of 2 .

Find the object's velocity at time $t=0$.
At time $t=0$, at what speed is the radiation intensity experienced by the object changing?

Exercise: We can identify points on the cone $x^{2}+y^{2}=z^{2}, z \geq 0$, using two coordinates, r and θ, by setting

$$
x=r \cos (\theta) \quad y=r \sin \theta \quad z=r \quad 0 \leq \theta \leq 2 \pi \quad 0 \leq r
$$

Define w by

$$
w=x y-x z^{2} .
$$

Find $\frac{\partial w}{\partial \theta}$ at the point $(-2,0,2)$.
(This is the same cone, the same function w, and the same point as in the example on page 6 .)

Exercise: Suppose that S is a level surface $f(x, y, z)=k$ of a differentiable function f and $\vec{r}(t)$ is a regular parametrization of a path γ lying in S. Since the value of f equals k for all points on S, and all points $\vec{r}(t)$ are on S, we have

$$
f(\vec{r}(t))=k .
$$

Start with this equation and differentiate both sides (using the chain rule for the left hand side) to show that

$$
\nabla f(\vec{r}(t)) \perp \vec{r}^{\prime}(t)
$$

Remember that k is a constant!

Since this is true for any path γ in S, we can conclude that

$$
\nabla f \perp S
$$

You just proved the following Theorem: The gradient of a differentiable function f at a point is normal to the level surface (or level curve) of f containing that point.

Exercise: If $f(x, y, z)=4 x^{2}-y^{2}+z^{2}$, then the hyperboloid $4 x^{2}-y^{2}+z^{2}=4$ is a level surface of f, so it should be perpendicular to the gradient of f at every point. The point $(1,1,1)$ is on this surface. Verify that the surface is perpendicular to the gradient of f at the point $(1,1,1)$ in the following way:

Use the implicit function theorem to compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the portion of the surface containing $(1,1,1)$, then evaluate those partial derivatives at the point $(1,1,1)$. Use these values to find the equation of a tangent plane to the surface at $(1,1,1)$.

Verify that the tangent plane is perpendicular to $\nabla f(1,1,1)$.

Theorem: (the chain rule): If $\vec{r}(t)$ is differentiable at t_{0}, and $f(x, y)$ is differentiable at $\vec{r}\left(t_{0}\right)$, then

$$
\frac{d}{d t}(f(\vec{r}(t)))=\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)
$$

Proof of the Chain Rule:
Let $\vec{r}(t)=\left(x_{0}, y_{0}\right)$. If f is differentiable at $\left(x_{0}, y_{0}\right)$, we can express $f(x, y)$ as

$$
f(x, y)=\underbrace{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)}_{\text {tangent approximation } \mathcal{P}(x, y)}+\underbrace{f(x, y)-\mathcal{P}(x, y)}_{\text {error }} E
$$

where

$$
\begin{gathered}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{E(x, y)}{\left|\left(x-x_{0}, y-y_{0}\right)\right|}=0 \\
a=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \quad b=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \quad \nabla f\left(x_{0}, y_{0}\right)=\langle a, b\rangle
\end{gathered}
$$

We have $\vec{r}\left(t_{0}\right)=\left(x_{0}, y_{0}\right)$ and \vec{r} is differentiable at t_{0}. We can write $\vec{r}(t)=\langle x(t), y(t)\rangle$ and compute the derivative of $f(\vec{r}(t))$ at $t=t_{0}$. We use the limit definition of derivative:

$$
\frac{d}{d t}\left(f\left(\vec{r}\left(t_{0}\right)\right)\right)=\lim _{t \rightarrow t_{0}} \frac{f(\vec{r}(t))-f\left(\vec{r}\left(t_{0}\right)\right)}{t-t_{0}}
$$

Now we say $\vec{r}(t)=\langle x(t), y(t)\rangle$.

$$
\lim _{t \rightarrow t_{0}} \frac{f(\vec{r}(t))-f\left(\vec{r}\left(t_{0}\right)\right)}{t-t_{0}}=\lim _{t \rightarrow t_{0}} \frac{f(x(t), y(t))-f\left(x_{0}, y_{0}\right)}{t-t_{0}}
$$

Now we express $f(x, y)$ as above.

$$
\begin{gathered}
\lim _{t \rightarrow t_{0}} \frac{f(x(t), y(t))-f\left(x_{0}, y_{0}\right)}{t-t_{0}}= \\
\lim _{t \rightarrow t_{0}} \frac{a\left(x(t)-x_{0}\right)+b\left(y(t)-y_{0}\right)+f\left(x_{0}, y_{0}\right)+E(x(t), y(t))-f\left(x_{0}, y_{0}\right)}{t-t_{0}}
\end{gathered}
$$

We cancel some things out and do some regrouping:

$$
\begin{gathered}
\lim _{t \rightarrow t_{0}} \frac{a\left(x(t)-x_{0}\right)+b\left(y(t)-y_{0}\right)+f\left(x_{0}, y_{0}\right)+E(x(t), y(t))-f\left(x_{0}, y_{0}\right)}{t-t_{0}}= \\
\lim _{t \rightarrow t_{0}} \frac{a\left(x(t)-x\left(t_{0}\right)\right)+b\left(y(t)-y\left(t_{0}\right)\right)+E(x(t), y(t))}{t-t_{0}}= \\
a \lim _{t \rightarrow t_{0}} \frac{\left(x(t)-x\left(t_{0}\right)\right)}{t-t_{0}}+b \lim _{t \rightarrow t_{0}} \frac{\left(y(t)-y\left(t_{0}\right)\right)}{t-t_{0}}+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}
\end{gathered}
$$

In the first two limits we recognize the definition of the derivative.

$$
\begin{gathered}
a \lim _{t \rightarrow t_{0}} \frac{\left(x(t)-x\left(t_{0}\right)\right)}{t-t_{0}}+b \lim _{t \rightarrow t_{0}} \frac{\left(y(t)-y\left(t_{0}\right)\right)}{t-t_{0}}+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}= \\
a x^{\prime}\left(t_{0}\right)+b y^{\prime}\left(t_{0}\right)+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}= \\
\left.\langle a, b\rangle \cdot\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right\rangle\right)+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}
\end{gathered}
$$

Now we remember that $\langle a, b\rangle=\nabla f\left(x_{0}, y_{0}\right)=\nabla f\left(\vec{r}\left(t_{0}\right)\right)$.

$$
\left.\langle a, b\rangle \cdot\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right\rangle\right)+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}=\nabla f\left(\vec{r}\left(t_{0}\right)\right) \cdot \vec{r}^{\prime}\left(t_{0}\right)+\lim _{t \rightarrow t_{0}} \frac{E(x(t), y(t))}{t-t_{0}}
$$

The boxed part is what we want, so we have to show the remaining limit is zero.
We will assume for simplicity that $\vec{r}^{\prime}\left(t_{0}\right) \neq \overrightarrow{0}$, so that for t near t_{0} we have $\vec{r}(t) \neq \vec{r}\left(t_{0}\right)$, and we can safely divide by $\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|$. (This assumption can be eliminated by a small trick.)

$$
\begin{gathered}
\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{t-t_{0}}\right|=\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}\right|\left|\frac{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}{t-t_{0}}\right|= \\
\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}\right| \lim _{t \rightarrow t_{0}}\left|\frac{\vec{r}(t)-\vec{r}\left(t_{0}\right)}{t-t_{0}}\right|
\end{gathered}
$$

Now we recognize the definition of derivative in the right-hand term.

$$
\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}\right| \lim _{t \rightarrow t_{0}}\left|\frac{\vec{r}(t)-\vec{r}\left(t_{0}\right)}{t-t_{0}}\right|=\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}\right|\left|\vec{r}^{\prime}\left(t_{0}\right)\right|
$$

We use the fact that as $t \rightarrow t_{0}$ we have $\vec{r}(t) \rightarrow \vec{r}\left(t_{0}\right)$, or $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.

$$
\lim _{t \rightarrow t_{0}}\left|\frac{E(x(t), y(t))}{\left|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right|}\right|\left|\vec{r}^{\prime}\left(t_{0}\right)\right|=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left|\frac{E(x, y)}{\left|(x, y)-\left(x_{0}, y_{0}\right)\right|}\right|\left|\vec{r}^{\prime}\left(t_{0}\right)\right|
$$

Now we use the definition of tangent.

$$
\left(\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left|\frac{E(x, y)}{\left|(x, y)-\left(x_{0}, y_{0}\right)\right|}\right|\right)\left|\vec{r}^{\prime}\left(t_{0}\right)\right|=(0)\left(\left|\vec{r}^{\prime}\left(t_{0}\right)\right|\right)=0 .
$$

This is what we wanted. We have shown

$$
\frac{d}{d t}\left(f\left(\vec{r}\left(t_{0}\right)\right)\right)=\nabla f\left(\vec{r}\left(t_{0}\right)\right) \cdot \vec{r}^{\prime}\left(t_{0}\right)
$$

