Math 8

Fall 2019

Section 2
November 8, 2019

First, some important points from the last class:

Theorem: If f : R? — R is a function whose graph has a tangent plane at the point (xq,yo, f(70,%0))
(in other words, f is differentiable at (xo,yo0)), then the tangent plane is the graph of the function

LGe) = (G2 o)) = 20) + (G Canso) ) (0= o) + FCoos ).

Theorem: If the partial derivatives of f(z,y) are defined near (z¢,yo) and continuous at (xg,yo), then
f is differentiable at (xo,yo)-

When f is differentiable at (zg,yo), we can approximate f(z,y) near (xo,yo) by
f(z,y) = L(z,y).

This is called the linear approximation or tangent approrimation to f near (zg,yo). The function L(z,y) is
called the linearization of f at (xo,yo)-

Definition: The differential of f is defined by

_0f 401
& = G+ 5 dy

When f is differentiable, we can use the differential for making approximations:

0 0
Af ~ a—iAm—&— a—;jAy.



In the preliminary homework, we had that 6 is a function of x and y, and = and y are functions of time

db
t, and we wanted to find e at a particular time tg. Probably you solved for 8 as a function of ¢ and then
took the derivative. Here is a different way to think about it:
Near the point x = xg, y = yo, 0 = 0y, we can approximate

00 00
0~ L(z,y) =00 + %(fﬂovyo)(x — o) + 371(21 —Y0)-

Notably, the function L has the same partial derivatives as 6 at our point. Since L and 6 are changing at

the same rates, we can try using L to find the rate of change of 6 with respect to ¢, at a time ¢ty at which
x =1z9 and y = yo:

df d | 06 00
E t—t - dt %(xmyo) (x_wo)—’_ai(anyO) (y_yO)
=to —— Y Nt/

=x(t S =yt
e=a(t) constant y=y(®)

(20 L) - (200, 2.

% dx 00 dy

= 9 (ffo»yo)a(to) + a*y(ffo,yo)a(to) =

t=to
constant

Note, this works IF 0 = f(z,y), (z,y) = 7(¢), and the function f is differentiable at (zo,yo) = 7(to).
(Of course 7 must also be differentiable at t3.) We may call the vector of the partial derivatives of f the
total derivative of f and write it as f’ or as V[ (the gradient of f). Then our formula becomes:

(F o7 (t0) = f/((t0)) - ¥'(t0) = VF(F(1)) - 7" (0).



Definition: If f: R™ — R, the gradient of f is the vector whose components are its partial derivatives:

vf(w7y7z) = <g§;($7y’ Z)’ %("I"’y’ z)’ %(:’U’ y7z)> :

If f is differentiable, we may also call Vf the (total) derivative of f and write it f’.

Theorem (the chain rule): If 7(¢) is differentiable at to, and f(z,y, z) is differentiable at 7(¢o), then

= (f(F(0)) = f1(F(1)) - 7 (t) = V(L)) - 7 (1)

If you want to picture the chain rule geometrically, here is a way to think about it. Let ¥: R — R? be
the position function of a point moving in the zy-plane. Imagine the zy-plane sitting inside R3.

Let f : R? — R be a function whose graph is a surface S, so f(x,v) is the height of the surface at (z,y).
Now imagine a point moving on S directly above (or below) the moving point in the zy-plane. The height
of that point at time ¢ is given by the composition

z = [f(r(t) = (fom)(t).
To find how fast this height is changing, we compute

dz

o = o)) = f(r(0) - 7(t) = V(D)) - 7 (D).

Example: Suppose a bug is crawling around the surface z = 22 + 42, so that its shadow is moving in
the xy-plane with (x,y)-coordinates at time ¢ given by 7(¢) = (t2,¢%). When the bug is at the point (1, 1,2),
how fast is its height increasing?

The bug’s height is 2 = f(z,y) = 2% + y* when its shadow has position (z,y), and the shadow’s position
at time t is (z,y) = 7(t) = (t?,t3). When the bug is at (1,1,2) we have 7(t) = (1,1) and t = 1. By the
Chain Rule,

dz d

o= @(f(F(t)) = Vf(F(t)) - 7'(t).
F(t) = (2t,3t%)  7'(1)=(2,3) Vf(z,y)=(2z,2y) Vf(1,1)=(2,2)
dz) V(L) -7 (1) = VF(1,1) - (2,3) = (2,2) - (2,3) = 10.

dtle=1



Theorem: (the chain rule): If #(¢) is differentiable at tg, and f(x,y, z) is differentiable at #(¢), then

d .. , 1
5 (1)) = V(@) - 7(2).

Rephrasing this, if w is a function of x, y, z, and x, y, z are all functions of ¢, then
dw  /Ow dw Ow dz dy dz 8wdm+8wdy+8wdz
dt  \ oz’ Oy’ 0z dt’ dt’ dt Or dt Oy dt Oz dt

AwNZ—A +8£A +8£Az~a£dj

ow dy owdz ,
oy 0z T i e
owdr Owdy Owdz dw
<8xdt+8ydt+3zdt>At (dt)At

Here’s another way to envision the chain rule physically: Suppose (x,y, z) is the position of a moving
, N .

object, and w = f(z,y, z) is the temperature at point (z,y, z). To find the rate of change of the temperature
of the moving object with respect to time, we have

dw_awdx 8711)@ 6711)%
dt Oxdt Oydt Oz dt’

We can approximate the change in temperature over a small interval of time At by

Aw ~ 8wdmAt 5'wdyA ow dz

ow dr Yoy e @t
—— ——
zAz ~Ay ~Az

d
Example: If w = 2232, z = sin(t), and y = cos(t), find di: att=_

3
T LT \/g s 1
1= w=sn(3)= w=eos(3) =3
ow V3 Ow 3 dz 1 dy V3
—_— = 2 2 = — —_— = 2 2 = — _— = = — —~ = — g = ——
or Y T4 oy T YT A cos(t) =5 ¢ = ~sin(®) 2
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The chain rule in different settings:

w = f(z) = f(g(t))

t—>xr—w
dw _ dw do
dt  dz dt

t— (z,y,2) > w
dw owdr  Owdy  Owdz

dt — fx dt ' Oy dt = 0z dt

one term for each intermediate variable

w = f(z,y,2) = f(G(s,1))
(s,t) = (x,y,2) > w
ow _owor  dwdy  ow o
ot Or Ot Oy Ot 0z Ot
ow Ow dx  Ow dy  Ow Iz

9s 0z 0s oy 9s 92 0s



Example: We can identify points on the cone z? + y? = 22, z > 0, using two coordinates, r and 6, by

setting
x=rcos(d) y=rsin(d) z=r 0<0<2r 0<r

Define w on the cone by

w=xy — 2>

Find g—w at the point (z,y,2) = (-2,0,2).
r

At the point (z,y) = (—2,0) we have

ow 9 ow ow

o Yy—z By T 92 Tz =8
ox B dy . B 0z _
5 = cos(f) = —1 o = sin(d) =0 o 1

We treat 6 as a constant and differentiate with respect to r, using the chain rule:

ow Owdxr  Owdy Owdz B B
= gt e et e e = (~D(=1) + (22)(0) + (YD) = 12

At a general point, we have

ow_owos owdy  owd:
or  dx Or Oy or 0z0r

(rsin(f) — r?)(cos(0)) + (rcos())(sin(8)) + (=2r% cos(A))(1) =
2r sin(0) cos(6) — 3r% cos(h).

(y — %) (cos(0)) + () (sin(0)) + (—2x2)(1) =

What does this mean? We define w as a function of (r,8) by looking at the point on the cone (z,y,2) =
(rcos(8),rsin(6),r), then computing w = zy — r22. We want to know, when (z,y) = (—2,0), the rate of
change of w with respect to r.

For example, suppose w denotes the temperature at a given point on the cone. Consider the ubiquitous
bug crawling on the cone, with its shadow moving in the xy-plane. The bug’s temperature is w. When
the bug’s shadow is where (r,0) = (2,—m), and the bug moves so its shadow’s new location is where
(r,0) = (24 Ar,—n) (that is, 0 remains constant and r changes by Ar), the bug’s temperature will have
changed by

Aw ~ a—wAr = 12Ar.
or



Recall implictly defined functions: An equation f(x,y,z) = 0 defining a surface S can be thought of as
0z
implicitly defining z as a function of x and y near a point on S. If we want to find — at that point, we can
treat y as a constant and z as a function of x, and differentiate the equation wtih respect to x:

0 0
o (F(w,,2) = 5 (0)

of ox Lof oy 0f 0:
Or 0x Oy dx 0z 0Ox
N N N

=1 =0 unknown
of ofor
or T oz0r "
9% __ &
Ox %

Theorem: (the implicit function theorem) If f(x,y, z) = 0 implicitly defines z as a function of x and y,
then

) of
0z _ 5 0 _ 5,
=~ T o7 = T o
ox 2L 0y 3L
If f(x,y) = 0 implicitly defines y as a function of z, then
of
dy 5
dx of
Example: Earlier, we looked at the surface
ar® +by? + ¢z =d
and used implicit differentiation:
0
2ax + QCZ—Z =0
oz
9z _ ax
or ¢z’
Now we can use the implicit function theorem:
flz,y,2) = ax? +by* +cz® —d f(z,y,2) =0
9 __ g e az
Ox af 2cz cz’
0z

You do not have to memorize the implicit function theorem, but you may use it if you wish.



Exercise: A surface S has the equation z = f(z,y). At (x,y) = (1,2) we have

9] 3]
p=45 Z=2 Zog
or dy
A bug is crawling on the surface S, and a light shining directly down through S (which is transparent) casts
the bug’s shadow on the zy-plane; the position of the shadow is 7(t). At time ¢g, the bug’s shadow has
position 7(¢9) = (1,2) and velocity 7' (tp) = (3, —1).

Use the chain rule to find the rate of change of the bug’s altitude with respect to time at the time .



Exercise: A radiation source at the origin subjects an object located at point (z,y, z) to radiation of
k
56'2 + y2 + 22’
moving toward the point (4,6, 13) at a speed of 2.
Find the object’s velocity at time ¢t = 0.
At time t = 0, at what speed is the radiation intensity experienced by the object changing?

intensity I = where k is a constant. At time ¢ = 0, an object located at point (1,2,1) is



Exercise: We can identify points on the cone 22 + 3% = 22, z > 0, using two coordinates, r and 6, by
setting

x=rcos(d) y=rsind z=r 0<60<27r 0<r

Define w by

w=xy — 2>

Find Z—Z at the point (—2,0,2).

(This is the same cone, the same function w, and the same point as in the example on page 6.)

10



Exercise: Suppose that S is a level surface f(z,y,2) = k of a differentiable function f and 7(¢) is a
regular parametrization of a path v lying in S. Since the value of f equals k for all points on S, and all
points 7(t) are on S, we have

f((@) = k.

Start with this equation and differentiate both sides (using the chain rule for the left hand side) to show
that
V() L' (t).

Remember that k is a constant!

Since this is true for any path v in S, we can conclude that
VfLlS

You just proved the following Theorem: The gradient of a differentiable function f at a point is normal
to the level surface (or level curve) of f containing that point.

11



Exercise: If f(z,y, z) = 42% — y? + 22, then the hyperboloid 422 — y? + 22 = 4 is a level surface of f, so
it should be perpendicular to the gradient of f at every point. The point (1,1,1) is on this surface. Verify
that the surface is perpendicular to the gradient of f at the point (1,1,1) in the following way:

z 0z
Use the implicit function theorem to compute — and —

ox Jy
(1,1,1), then evaluate those partial derivatives at the point (1,1,1). Use these values to find the equation

of a tangent plane to the surface at (1,1,1).
Verify that the tangent plane is perpendicular to V f(1,1,1).

for the portion of the surface containing

12



Theorem: (the chain rule): If 7#(¢) is differentiable at ¢y, and f(x,y) is differentiable at #(ty), then

d

5 S8) = V() - 7(2).

Proof of the Chain Rule:
Let 7(t) = (xo,y0). If f is differentiable at (xq,yo), we can express f(z,y) as

f(z,y) = a(z — z0) + b(y — yo) + f(z0,90) + E(z,y)
——

tangent approximation P(z,y) error f(z,y)—P(z,y)
where 5
o (z,y) —0
(@)= (zo.u0) |(z — 0,y — Yo)]
a= %(ffo,yo) b= %(-TanO) Vf(2o,0) = (a,b)

We have 7(tg) = (z0,yo) and 7 is differentiable at t5. We can write 7(t) = (z(¢),y(t)) and compute the
derivative of f(7(t)) at t = to. We use the limit definition of derivative:

f(r(@t) = f(7(to))

t—to t—to

Now we say 7(t) = (z(t), y(t)).

JE) = St) _ - T(0,5(0) = F(zo,w0)

t—to t—tp t—to t— 1o

Now we express f(z,y) as above.

f(z(t),yt) — f(wo,y0)

lim —
t—to t— to
lim a(z(t) — x0) + b(y(t) —yo) + f(xo0,y0) + E(x(t),y(t)) — f(zo,y0)
t—to t—to

We cancel some things out and do some regrouping:

a(z(t) — o) + b(y(t) — o) + f(xo,v0) + E(x(t), y(t)) — f(zo,y0)

A t—to -
L afa(t) — (to)) + blu(®) — (ko)) + E((t).5(®) _
t—to t—to
e —ate) WO —yle) | B, u)
ajim S b m S 4 lim —— s S

In the first two limits we recognize the definition of the derivative.

(@) — x(to)) (y(t) —y(to)) | . Elx(t),y(t))
e } MR — ; T T, T
E(x(t),y(t)

"(to) + by’ (to) + lim — 22 =
az’(to) + by (to) + lim ==

(a,b) - (2'(t0), y'(f0))) + lim

13



Now we remember that (a,b) = V f(zo,y0) = Vf(7(to)).

fa.5) - (@' t0), (1)) + Jim PV
0 0

B(t). y(t))
= | VA (to)) - 7' (t0) |+ Jimm =P

The boxed part is what we want, so we have to show the remaining limit is zero.

We will assume for simplicity that 7 (ty) # 0, so that for  near to we have 7(t) # 7(t), and we can safely
divide by |7(t) — #(to)|. (This assumption can be eliminated by a small trick.)

i [ELECLUD) _ D000 1710 -
t—to t—to t—to ‘ ﬁ(t) 7?(t())| t—tg
E(z(t),y(®) |, |7 —(t)
t—to | |F(t) — 7(to)] t%tg t—to

Now we recognize the definition of derivative in the right-hand term.

t—to | |7(t) — 7(to)] | t=to t— to T it |7(t) — 7(to)]
We use the fact that as t — tg we have 7(t) — 7(to), or (z,y) — (o, ¥o)-
50 | TR(E) — 7 (to)] (@)= (z0.90) | |(2,y) — (20, Yo)|

Now we use the definition of tangent.

E(z,y) ” y -
[(z,y) — (20, y0) |D [ (o)l = (0) (‘T <t0)‘) =0.

( lim
(z,y)—(z0,0)

This is what we wanted. We have shown
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