
Math 8
Fall 2019
Section 2

November 8, 2019

First, some important points from the last class:

Theorem: If f : R2 → R is a function whose graph has a tangent plane at the point (x0, y0, f(x0, y0))
(in other words, f is differentiable at (x0, y0)), then the tangent plane is the graph of the function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0).

Theorem: If the partial derivatives of f(x, y) are defined near (x0, y0) and continuous at (x0, y0), then
f is differentiable at (x0, y0).

When f is differentiable at (x0, y0), we can approximate f(x, y) near (x0, y0) by

f(x, y) ≈ L(x, y).

This is called the linear approximation or tangent approximation to f near (x0, y0). The function L(x, y) is
called the linearization of f at (x0, y0).

Definition: The differential of f is defined by

df =
∂f

∂x
dx+

∂f

∂y
dy.

When f is differentiable, we can use the differential for making approximations:

∆f ≈ ∂f

∂x
∆x+

∂f

∂y
∆y.
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In the preliminary homework, we had that θ is a function of x and y, and x and y are functions of time

t, and we wanted to find
dθ

dt
at a particular time t0. Probably you solved for θ as a function of t and then

took the derivative. Here is a different way to think about it:
Near the point x = x0, y = y0, θ = θ0, we can approximate

θ ≈ L(x, y) = θ0 +
∂θ

∂x
(x0, y0)(x− x0) +

∂θ

∂y
(y − y0).

Notably, the function L has the same partial derivatives as θ at our point. Since L and θ are changing at
the same rates, we can try using L to find the rate of change of θ with respect to t, at a time t0 at which
x = x0 and y = y0:

dθ

dt

∣∣∣
t=t0

=
d

dt

∂θ

∂x
(x0, y0)︸ ︷︷ ︸

constant

(x− x0)︸ ︷︷ ︸
x=x(t)

+
∂θ

∂y
(x0, y0)︸ ︷︷ ︸

constant

(y − y0)︸ ︷︷ ︸
y=y(t)


∣∣∣∣∣
t=t0

=
∂θ

∂x
(x0, y0)

dx

dt
(t0) +

∂θ

∂y
(x0, y0)

dy

dt
(t0) =

〈
∂θ

∂x
(x0, y0),

∂θ

∂y
(x0, y0)

〉
·
〈
dx

dt
(t0),

dy

dt
(t0)

〉
.

Note, this works IF θ = f(x, y), 〈x, y〉 = ~r(t), and the function f is differentiable at (x0, y0) = ~r(t0).
(Of course ~r must also be differentiable at t0.) We may call the vector of the partial derivatives of f the
total derivative of f and write it as f ′ or as ∇f (the gradient of f). Then our formula becomes:

(f ◦ ~r)′(t0) = f ′(~r(t0)) · ~r ′(t0) = ∇f(~r(t)) · ~r ′(t).
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Definition: If f : Rn → R, the gradient of f is the vector whose components are its partial derivatives:

∇f(x, y, z) =

〈
∂f

∂x
(x, y, z),

∂f

∂y
(x, y, z),

∂f

∂z
(x, y, z)

〉
.

If f is differentiable, we may also call ∇f the (total) derivative of f and write it f ′.

Theorem (the chain rule): If ~r(t) is differentiable at t0, and f(x, y, z) is differentiable at ~r(t0), then

d

dt
(f(~r(t))) = f ′(~r(t)) · ~r ′(t) = ∇f(~r(t)) · ~r ′(t).

If you want to picture the chain rule geometrically, here is a way to think about it. Let ~r : R → R2 be
the position function of a point moving in the xy-plane. Imagine the xy-plane sitting inside R3.

Let f : R2 → R be a function whose graph is a surface S, so f(x, y) is the height of the surface at (x, y).
Now imagine a point moving on S directly above (or below) the moving point in the xy-plane. The height
of that point at time t is given by the composition

z = f(~r(t)) = (f ◦ ~r)(t).

To find how fast this height is changing, we compute

dz

dt
= (f ◦ ~r)′(t) = f ′(~r(t)) · ~r ′(t) = ∇f(~r(t)) · ~r ′(t).

Example: Suppose a bug is crawling around the surface z = x2 + y2, so that its shadow is moving in
the xy-plane with (x, y)-coordinates at time t given by ~r(t) = 〈t2, t3〉. When the bug is at the point (1, 1, 2),
how fast is its height increasing?

The bug’s height is z = f(x, y) = x2 + y2 when its shadow has position (x, y), and the shadow’s position
at time t is (x, y) = ~r(t) = 〈t2, t3〉. When the bug is at (1, 1, 2) we have ~r(t) = 〈1, 1〉 and t = 1. By the
Chain Rule,

dz

dt
=

d

dt
(f(~r(t)) = ∇f(~r(t)) · ~r ′(t).

~r ′(t) = 〈2t, 3t2〉 ~r ′(1) = 〈2, 3〉 ∇f(x, y) = 〈2x, 2y〉 ∇f(1, 1) = 〈2, 2〉
dz

dt

∣∣∣
t=1

= ∇f(~r(1)) · ~r ′(1) = ∇f(1, 1) · 〈2, 3〉 = 〈2, 2〉 · 〈2, 3〉 = 10.
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Theorem: (the chain rule): If ~r(t) is differentiable at t0, and f(x, y, z) is differentiable at ~r(t0), then

d

dt
(f(~r(t))) = ∇f(~r(t)) · ~r ′(t).

Rephrasing this, if w is a function of x, y, z, and x, y, z are all functions of t, then

dw

dt
=

〈
∂w

∂x
,
∂w

∂y
,
∂w

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

∆w ≈ ∂w

∂x
∆x+

∂w

∂y
∆y +

∂w

∂z
∆z ≈ ∂w

∂x

dx

dt
∆t+

∂w

∂y

dy

dt
∆t+

∂w

∂z

dz

dt
∆t =(

∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

)
∆t =

(
dw

dt

)
∆t

Here’s another way to envision the chain rule physically: Suppose (x, y, z) is the position of a moving
object, and w = f(x, y, z) is the temperature at point (x, y, z). To find the rate of change of the temperature
of the moving object with respect to time, we have

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
.

We can approximate the change in temperature over a small interval of time ∆t by

∆w ≈ ∂w

∂x

dx

dt
∆t︸ ︷︷ ︸

≈∆x

+
∂w

∂y

dy

dt
∆t︸ ︷︷ ︸

≈∆y

+
∂w

∂z

dz

dt
∆t︸ ︷︷ ︸

≈∆z

Example: If w = x2y2, x = sin(t), and y = cos(t), find
dw

dt
at t =

π

3
.

t =
π

3
x = sin

(π
3

)
=

√
3

2
y = cos

(π
3

)
=

1

2

∂w

∂x
= 2xy2 =

√
3

4

∂w

∂y
= 2x2y =

3

4

dx

dt
= cos(t) =

1

2

dy

dt
= − sin(t) = −

√
3

2

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
=

(√
3

4

)(
1

2

)
+

(
3

4

)(
−
√

3

2

)
= −
√

3

4
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The chain rule in different settings:

w = f(x) = f(g(t))

t→ x→ w

dw

dt
=
dw

dx

dx

dt

w = f(x, y, z) = f(~g(t))

t→ (x, y, z)→ w

dw

dt
=

∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt︸ ︷︷ ︸
one term for each intermediate variable

w = f(x, y, z) = f(G(s, t))

(s, t)→ (x, y, z)→ w

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
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Example: We can identify points on the cone x2 + y2 = z2, z ≥ 0, using two coordinates, r and θ, by
setting

x = r cos(θ) y = r sin(θ) z = r 0 ≤ θ ≤ 2π 0 ≤ r.

Define w on the cone by
w = xy − xz2.

Find
∂w

∂r
at the point (x, y, z) = (−2, 0, 2).

At the point (x, y) = (−2, 0) we have

r = 2 θ = π x = −2 y = 0 z = 2

∂w

∂x
= y − z2 = −4

∂w

∂y
= x = −2

∂w

∂z
= −2xz = 8

∂x

∂r
= cos(θ) = −1

∂y

∂r
= sin(θ) = 0

∂z

∂r
= 1

We treat θ as a constant and differentiate with respect to r, using the chain rule:

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
= (−4)(−1) + (−2)(0) + (8)(1) = 12

At a general point, we have

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
= (y − z2)(cos(θ)) + (x)(sin(θ)) + (−2xz)(1) =

(r sin(θ)− r2)(cos(θ)) + (r cos(θ))(sin(θ)) + (−2r2 cos(θ))(1) =

2r sin(θ) cos(θ)− 3r2 cos(θ).

What does this mean? We define w as a function of (r, θ) by looking at the point on the cone (x, y, z) =
(r cos(θ), r sin(θ), r), then computing w = xy − xz2. We want to know, when (x, y) = (−2, 0), the rate of
change of w with respect to r.

For example, suppose w denotes the temperature at a given point on the cone. Consider the ubiquitous
bug crawling on the cone, with its shadow moving in the xy-plane. The bug’s temperature is w. When
the bug’s shadow is where (r, θ) = (2,−π), and the bug moves so its shadow’s new location is where
(r, θ) = (2 + ∆r,−π) (that is, θ remains constant and r changes by ∆r), the bug’s temperature will have
changed by

∆w ≈ ∂w

∂r
∆r = 12∆r.
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Recall implictly defined functions: An equation f(x, y, z) = 0 defining a surface S can be thought of as

implicitly defining z as a function of x and y near a point on S. If we want to find
∂z

∂x
at that point, we can

treat y as a constant and z as a function of x, and differentiate the equation wtih respect to x:

∂

∂x
(f(x, y, z)) =

∂

∂x
(0)

∂f

∂x

∂x

∂x︸︷︷︸
=1

+
∂f

∂y

∂y

∂x︸︷︷︸
=0

+
∂f

∂z

∂z

∂x︸︷︷︸
unknown

= 0

∂f

∂x
+
∂f

∂z

∂z

∂x
= 0

∂z

∂x
= −

∂f
∂x
∂f
∂z

Theorem: (the implicit function theorem) If f(x, y, z) = 0 implicitly defines z as a function of x and y,
then

∂z

∂x
= −

∂f
∂x
∂f
∂z

∂z

∂y
= −

∂f
∂y

∂f
∂z

.

If f(x, y) = 0 implicitly defines y as a function of x, then

dy

dx
= −

∂f
∂x
∂f
∂y

.

Example: Earlier, we looked at the surface

ax2 + by2 + cz2 = d

and used implicit differentiation:

2ax+ 2cz
∂z

∂x
= 0

∂z

∂x
= −ax

cz
.

Now we can use the implicit function theorem:

f(x, y, z) = ax2 + by2 + cz2 − d f(x, y, z) = 0

∂z

∂x
= −

∂f
∂x
∂f
∂z

= −2ax

2cz
= −ax

cz
.

You do not have to memorize the implicit function theorem, but you may use it if you wish.
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Exercise: A surface S has the equation z = f(x, y). At (x, y) = (1, 2) we have

z = 45
∂z

∂x
= 2

∂z

∂y
= 1

A bug is crawling on the surface S, and a light shining directly down through S (which is transparent) casts
the bug’s shadow on the xy-plane; the position of the shadow is ~r(t). At time t0, the bug’s shadow has
position ~r(t0) = 〈1, 2〉 and velocity ~r ′(t0) = 〈3,−1〉.

Use the chain rule to find the rate of change of the bug’s altitude with respect to time at the time t0.
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Exercise: A radiation source at the origin subjects an object located at point (x, y, z) to radiation of

intensity I =
k

x2 + y2 + z2
, where k is a constant. At time t = 0, an object located at point (1, 2, 1) is

moving toward the point (4, 6, 13) at a speed of 2.
Find the object’s velocity at time t = 0.
At time t = 0, at what speed is the radiation intensity experienced by the object changing?
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Exercise: We can identify points on the cone x2 + y2 = z2, z ≥ 0, using two coordinates, r and θ, by
setting

x = r cos(θ) y = r sin θ z = r 0 ≤ θ ≤ 2π 0 ≤ r.

Define w by
w = xy − xz2.

Find
∂w

∂θ
at the point (−2, 0, 2).

(This is the same cone, the same function w, and the same point as in the example on page 6.)
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Exercise: Suppose that S is a level surface f(x, y, z) = k of a differentiable function f and ~r(t) is a
regular parametrization of a path γ lying in S. Since the value of f equals k for all points on S, and all
points ~r(t) are on S, we have

f(~r(t)) = k.

Start with this equation and differentiate both sides (using the chain rule for the left hand side) to show
that

∇f(~r(t)) ⊥ ~r ′(t).

Remember that k is a constant!

Since this is true for any path γ in S, we can conclude that

∇f ⊥ S

You just proved the following Theorem: The gradient of a differentiable function f at a point is normal
to the level surface (or level curve) of f containing that point.
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Exercise: If f(x, y, z) = 4x2 − y2 + z2, then the hyperboloid 4x2 − y2 + z2 = 4 is a level surface of f , so
it should be perpendicular to the gradient of f at every point. The point (1, 1, 1) is on this surface. Verify
that the surface is perpendicular to the gradient of f at the point (1, 1, 1) in the following way:

Use the implicit function theorem to compute
∂z

∂x
and

∂z

∂y
for the portion of the surface containing

(1, 1, 1), then evaluate those partial derivatives at the point (1, 1, 1). Use these values to find the equation
of a tangent plane to the surface at (1, 1, 1).

Verify that the tangent plane is perpendicular to ∇f(1, 1, 1).
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Theorem: (the chain rule): If ~r(t) is differentiable at t0, and f(x, y) is differentiable at ~r(t0), then

d

dt
(f(~r(t))) = ∇f(~r(t)) · ~r ′(t).

Proof of the Chain Rule:

Let ~r(t) = (x0, y0). If f is differentiable at (x0, y0), we can express f(x, y) as

f(x, y) = a(x− x0) + b(y − y0) + f(x0, y0)︸ ︷︷ ︸
tangent approximation P(x,y)

+ E(x, y)︸ ︷︷ ︸
error f(x,y)−P(x,y)

where

lim
(x,y)→(x0,y0)

E(x, y)

|(x− x0, y − y0)|
= 0

a =
∂f

∂x
(x0, y0) b =

∂f

∂y
(x0, y0) ∇f(x0, y0) = 〈a, b〉

We have ~r(t0) = (x0, y0) and ~r is differentiable at t0. We can write ~r(t) = 〈x(t), y(t)〉 and compute the
derivative of f(~r(t)) at t = t0. We use the limit definition of derivative:

d

dt
(f(~r(t0))) = lim

t→t0

f(~r(t))− f(~r(t0))

t− t0

Now we say ~r(t) = 〈x(t), y(t)〉.

lim
t→t0

f(~r(t))− f(~r(t0))

t− t0
= lim

t→t0

f(x(t), y(t))− f(x0, y0)

t− t0

Now we express f(x, y) as above.

lim
t→t0

f(x(t), y(t))− f(x0, y0)

t− t0
=

lim
t→t0

a(x(t)− x0) + b(y(t)− y0) + f(x0, y0) + E(x(t), y(t))− f(x0, y0)

t− t0
We cancel some things out and do some regrouping:

lim
t→t0

a(x(t)− x0) + b(y(t)− y0) + f(x0, y0) + E(x(t), y(t))− f(x0, y0)

t− t0
=

lim
t→t0

a(x(t)− x(t0)) + b(y(t)− y(t0)) + E(x(t), y(t))

t− t0
=

a lim
t→t0

(x(t)− x(t0))

t− t0
+ b lim

t→t0

(y(t)− y(t0))

t− t0
+ lim

t→t0

E(x(t), y(t))

t− t0
In the first two limits we recognize the definition of the derivative.

a lim
t→t0

(x(t)− x(t0))

t− t0
+ b lim

t→t0

(y(t)− y(t0))

t− t0
+ lim

t→t0

E(x(t), y(t))

t− t0
=

ax′(t0) + by′(t0) + lim
t→t0

E(x(t), y(t))

t− t0
=

〈a, b〉 · 〈x′(t0), y′(t0)〉) + lim
t→t0

E(x(t), y(t))

t− t0
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Now we remember that 〈a, b〉 = ∇f(x0, y0) = ∇f(~r(t0)).

〈a, b〉 · 〈x′(t0), y′(t0)〉) + lim
t→t0

E(x(t), y(t))

t− t0
= ∇f(~r(t0)) · ~r ′(t0) + lim

t→t0

E(x(t), y(t))

t− t0

The boxed part is what we want, so we have to show the remaining limit is zero.

We will assume for simplicity that ~r ′(t0) 6= ~0, so that for t near t0 we have ~r(t) 6= ~r(t0), and we can safely
divide by |~r(t)− ~r(t0)|. (This assumption can be eliminated by a small trick.)

lim
t→t0

∣∣∣∣E(x(t), y(t))

t− t0

∣∣∣∣ = lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ ∣∣∣∣ |~r(t)− ~r(t0)|
t− t0

∣∣∣∣ =

lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ lim
t→t0

∣∣∣∣~r(t)− ~r(t0)

t− t0

∣∣∣∣
Now we recognize the definition of derivative in the right-hand term.

lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ lim
t→t0

∣∣∣∣~r(t)− ~r(t0)

t− t0

∣∣∣∣ = lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ |~r ′(t0)|

We use the fact that as t→ t0 we have ~r(t)→ ~r(t0), or (x, y)→ (x0, y0).

lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ |~r ′(t0)| = lim
(x,y)→(x0,y0)

∣∣∣∣ E(x, y)

|(x, y)− (x0, y0)|

∣∣∣∣ |~r ′(t0)|

Now we use the definition of tangent.(
lim

(x,y)→(x0,y0)

∣∣∣∣ E(x, y)

|(x, y)− (x0, y0)|

∣∣∣∣) |~r ′(t0)| =
(
0
) (
|~r ′(t0)|

)
= 0.

This is what we wanted. We have shown

d

dt
(f(~r(t0))) = ∇f(~r(t0)) · ~r ′(t0)
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