Math 8
Winter 2020
Section 1
March 2, 2020

First, some important points from the last class:
Definition: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\vec{u}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ is a unit vector in \mathbb{R}^{n}, then the directional derivative of f at $\left(x_{1}, \ldots, x_{n}\right)$ in the direction \vec{u} is

$$
D_{\vec{u}} f\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial f}{\partial \vec{u}}\left(x_{1}, \ldots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(\left(x_{1}, \ldots, x_{n}\right)+h\left(u_{1}, \ldots, u_{n}\right)\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h} .
$$

This is the rate of change of f with respect to distance, when the argument (input) of f is moving in the direction \vec{u}.

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $D_{\vec{u}}(x, y)$ is the slope of the slice of the graph of f in the vertical plane containing the line in the $x y$-plane through the point (x, y) in the direction of the vector \vec{u}.

If f denotes temperature in degrees, and we measure distances in meters, then the units of $D_{\vec{u}}(f)$ are degrees per meter.

Theorem: If f is differentiable at $\left(x_{1}, \ldots, x_{n}\right)$, then

$$
D_{\vec{u}}\left(x_{1}, \ldots, x_{n}\right)=\nabla f\left(x_{1}, \ldots, x_{n}\right) \cdot \vec{u} .
$$

Warning: The vector \vec{u} must be a unit vector.
Theorem: If f is differentiable at $\left(x_{1}, \ldots, x_{n}\right)$ then:
The maximum value of $D_{\vec{u}} f\left(x_{1}, \ldots, x_{n}\right)$ is $\left|\nabla f\left(x_{1}, \ldots, x_{n}\right)\right|$ and it occurs when \vec{u} points in the direction of $\nabla f\left(x_{1}, \ldots, x_{n}\right)$.

The minimum value of $D_{\vec{u}} f\left(x_{1}, \ldots, x_{n}\right)$ is $-\left|\nabla f\left(x_{1}, \ldots, x_{n}\right)\right|$ and it occurs when \vec{u} points in the opposite direction to $\nabla f\left(x_{1}, \ldots, x_{n}\right)$.

The value of $D_{\vec{u}} f\left(x_{1}, \ldots, x_{n}\right)$ is 0 when \vec{u} is perpendicular to $\nabla f\left(x_{1}, \ldots, x_{n}\right)$.
The vector $\nabla f\left(x_{1}, \ldots, x_{n}\right)$ is normal to the level set (level curve or level surface) of f containing the point $\left(x_{1}, \ldots, x_{n}\right)$.

Here is a contour plot, and a picture of the gradient field, of the function

$$
f(x, y)=x^{2}-y^{2}
$$

The gradient field is an example of a vector field, a function that assigns to every point a vector. In this case, ∇f assigns to every point (x, y) the vector $\nabla f(x, y)$.

Remember that level curves of f are in the domain of f. In this case, for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the graph of f is a surface in \mathbb{R}^{3}, but the level curves of f are curves in the domain \mathbb{R}^{2}.

Gradient vectors of f are also in the domain of f.

Preliminary homework: Find all points where the graph of the function

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}
$$

has a horizontal tangent plane.
This is a polynomial, so it is differentiable everywhere, and it will have a horizontal tangent plane exactly when both partial derivatives equal zero.

$$
\begin{array}{cl}
\frac{\partial f}{\partial x}(x, y)=3-3 x^{2}=3\left(1-x^{2}\right) & \frac{\partial f}{\partial y}(x, y)=-4 y+4 y^{3}=4 y\left(y^{2}-1\right) \\
\frac{\partial f}{\partial x}(x, y)=0 \text { when } x=1 \text { or } x=-1 & \frac{\partial f}{\partial y}(x, y)=0 \text { when } y=0 \text { or } y=1 \text { or } y=-1
\end{array}
$$

The tangent plane is horizontal at the points

$$
(1,0) \quad(1,1) \quad(1,-1) \quad(-1,0) \quad(-1,1) \quad(-1,-1)
$$

Definition: The point (a, b) is a critical point of $f(x, y)$ if either $\nabla f(a, b)=\langle 0,0\rangle$ or $\nabla f(a, b)$ is undefined.

The point (a, b) is a local maximum point of $f(x, y)$ if there is any neighborhood of (a, b) throughout which $f(x, y) \leq f(a, b)$. (A neighborhood of (x, y) is a disc centered at (x, y).)

The point (a, b) is a local minimum point of $f(x, y)$ if there is any neighborhood of (a, b) throughout which $f(x, y) \geq f(a, b)$.

The point (a, b) is a saddle point of $f(x, y)$ if $\nabla f(a, b)=\langle 0,0\rangle$ and (a, b) is neither a local maximum point nor a local minimum point.

Theorem: Local maximum and minimum points are always critical points.
Note: This applies to functions of more than two variables as well.
Question: For the function $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$, can we tell which of the six critical points are local minimum points, local maximum points, and saddle points?

Note that

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}=g(x)+h(y) \text { where } g(x)=3 x-x^{3} \text { and } h(y)=y^{4}-2 y^{2} .
$$

We can analyze g and h :

$$
g^{\prime}(x)=3-3 x^{2} \quad g^{\prime \prime}(x)=-6 x \quad g^{\prime \prime}(-1)=6>0 \quad g^{\prime \prime}(1)=-6<0,
$$

so by the second derivative test, $x=-1$ is a local minimum point and $x=1$ is a local maximum point for $g(x)$.

$$
h^{\prime}(y)=4 y^{3}-4 y \quad h^{\prime \prime}(y)=12 y^{2}-4 \quad h^{\prime \prime}(-1)=h^{\prime \prime}(1)=8>0 \quad h^{\prime \prime}(0)=-4 .
$$

By the second derivative test, $y=-1$ and $y=1$ are local minimum points for $h(y)$, and $y=0$ is a local maximum point.

The point $(1,0)$, where both $g(x)$ and $h(y)$ reach local maxima, is a local maximum point for f.

The points $(-1,-1)$ and $(-1,1)$, where both $g(x)$ and $h(y)$ reach local minima, are local minimum points for f.

The points $(1,-1),(1,1))$, and $(-1,0)$, where one of the functions reaches a local maximum and the other reaches a local minimum, are saddle points for f.

Usually it is not this easy, because a function $f(x, y)$ cannot usually be written in the form $g(x)+h(y)$.

Example: Here are some level curves, and the gradient field, of $f(x, y)=\sin (x) \sin (y)$. Where do we see critical points? Are they local maxima, local minima, or saddle points?

Definition: If (a, b) is a critical point of $f(x, y)$, and all the second partial derivatives of f are defined and continuous near (a, b), we define the discriminant of f at (a, b) to be

$$
D(a, b)=\left|\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\
\frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right|
$$

Theorem (the second derivative test): If (a, b) is a critical point of $f(x, y)$, and all the second partial derivatives of f are defined and continuous near (a, b), then

$$
\begin{gathered}
D(a, b)>0 \Longrightarrow(a, b) \text { is a local minimum or maximum point; } \\
D(a, b)<0 \Longrightarrow(a, b) \text { is a saddle point; }
\end{gathered}
$$

$D(a, b)=0 \Longrightarrow$ the second derivative test fails to give any information about (a,b).

$$
\begin{aligned}
& D(a, b)>0 \& \frac{\partial^{2} f}{\partial x^{2}}(a, b)<0 \Longrightarrow(a, b) \text { is a local maximum point; } \\
& D(a, b)>0 \& \frac{\partial^{2} f}{\partial x^{2}}(a, b)>0 \Longrightarrow(a, b) \text { is a local minimum point. }
\end{aligned}
$$

Note: This second derivative test is for functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We are not learning a second derivative test for functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$.

Example: Apply the second derivative test to some of the critical points of the function from the preliminary homework:

$$
\begin{gathered}
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4} \\
\frac{\partial f}{\partial x}(x, y)=3-3 x^{2}=3\left(1-x^{2}\right) \quad \frac{\partial f}{\partial y}(x, y)=-4 y+4 y^{3}=4 y\left(y^{2}-1\right) \\
\frac{\partial^{2} f}{\partial x^{2}}(x, y)=-6 x \quad \frac{\partial^{2} f}{\partial y^{2}}(x, y)=12 y^{2}-4 \quad \frac{\partial^{2} f}{\partial x \partial y}(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(x, y)=0 \\
D(x, y)=\left|\begin{array}{cc}
-6 x & 0 \\
0 & 12 y^{2}-4
\end{array}\right|=-6 x\left(12 y^{2}-4\right) \\
D(1,0)=-6(-4)=24>0 \& \frac{\partial^{2} f}{\partial x^{2}}(1,0)=-6<0 \quad \text { so }(1,0) \text { is a local maximum point. }
\end{gathered}
$$

$$
D(1,1)=-6(8)=-48<0 \quad \text { so }(1,1) \text { is a saddle point. }
$$

Example: Find the critical points of

$$
f(x, y)=2 x^{3}-x^{2} y+y
$$

and use the second derivative test to classify them as local maximum points, local minimum points, or saddle points.

Example: The only critical point of $f(x, y)=x^{2}+y^{2}$ is $(0,0)$, which is a local minimum point.

What are the largest and smallest values of $f(x, y)$ on the square region D defined by $-1 \leq x \leq 1,-1 \leq y \leq 1$, and where are they located?

Since $f(x, y)$ is the square of the distance from the origin to (x, y), we can analyze this one without too much trouble.

The smallest value is $f(0,0)=0$.
The largest value is $f(1,1)=f(1,-1)=f(-1,1)=f(-1,-1)=2$.
The smallest value occurs inside D, at a critical point of f. The largest value occurs at the edge of D. This illustrates the general case.

Definition: A region D is bounded if there is some number b such that every point in D has a distance from the origin of at most b.
D is open if every point that belongs to D has a neighborhood that is included in D.
D is closed if every edge point of D belongs to D. (In three dimensions, every point on the surface of D belongs to D.)

Example: The region $x^{2}+y^{2}<1$ is open and bounded.
The region $x^{2}+y^{2} \leq 1$ is closed and bounded.
The region $1<x^{2}+y^{2} \leq 4$ is bounded, and neither closed nor open.
The region $x^{2}+y^{2} \geq 1$ is closed and unbounded.
Definition: The number c is an absolute maximum value for $f(x, y)$ on D if there is some point (a, b) in D such that $f(a, b)=c$, and for all points (x, y) in D we have $f(x, y) \leq c$. The absolute maximum value c is attained at (a, b).

The number c is an absolute minimum value for $f(x, y)$ on D if there is some point (a, b) in D such that $f(a, b)=c$, and for all points (x, y) in D we have $f(x, y) \geq c$. The absolute minimum value c is attained at (a, b).

Theorem: A continuous function $f(x, y)$ defined on a closed bounded region D has an absolute maximum value and an absolute minimum value on D. The points at which those extreme values are attained are either critical points of f or edge points of D.

Note: This applies to functions of more than two variables as well.

Example: Find the largest and smallest values of $f(x, y)=x^{2}-y^{2}$ on the region $x^{2}+y^{2} \leq 1$.

There is one critical point of f, the origin $(0,0)$, and

$$
f(0,0)=0
$$

This is a possible candidate for the largest or smallest value.
Now we have to check the edge points.
Method 1: Parametrize the edge, by $(x, y)=(\cos (t), \sin (t)), 0 \leq t \leq 2 \pi$, and find the largest and smallest values of $f(\cos (t), \sin (t))$.

$$
\begin{gathered}
g(t)=f(\cos (t), \sin (t))=\cos ^{2}(t)-\sin ^{2}(t)=1-2 \sin ^{2}(t) \\
g^{\prime}(t)=-4 \sin (t) \cos (t)
\end{gathered}
$$

Check critical points of g and end points of the interval. End points: $t=0((x, y)=(1,0))$, $t=2 \pi((x, y)=(1,0))$. Critical points other than end points: When $\sin (t)=0, t=\pi$, $(x, y)=(-1,0)$. When $\cos (t)=0, t=\frac{\pi}{2}((x, y)=(0,1)), t=\frac{3 \pi}{2}((x, y)=(0,-1))$. This gives these possible candidates for maximum or minimum value of f :

$$
f(1,0)=1 \quad f(-1,0)=1 \quad f(0,1)=-1 \quad f(0,-1)=-1 .
$$

Compare these to the value at our critical point, $f(0,0)=0$.
The maximum value is $f(1,0)=f(-1,0)=1$, and the minimum value is $f(0,1)=$ $f(0,-1)=-1$.

Method 2: Write y in terms of x on the top half of the circle:

$$
y=\sqrt{1-x^{2}} \quad-1 \leq x \leq 1 \quad f(x, y)=f\left(x, \sqrt{1-x^{2}}\right)=x^{2}-\left(1-x^{2}\right)=2 x^{2}-1=h(x)
$$

Now find the largest and smallest values of $h(x)$ by checking critical points and end points.
Critical point: $h^{\prime}(x)=4 x=0$ when $x=0((x, y)=(0,1))$.
End points: $x=-1((x, y)=(-1,0)), x=1((x, y)=(1,0))$.
This gives $(0,1),(-1,0)$, and $(1,0)$ as candidate edge points at which f could reach its maximum or minimum value.

Doing the same on the bottom half of the circle gives $(0,-1),(-1,0)$, and $(1,0)$.
Now we have the same five points to check as before:

$$
\begin{gathered}
f(1,0)=1 \quad f(-1,0)=1 \quad f(0,1)=-1 \\
f(0,-1)=-1 \quad f(0,0)=0 .
\end{gathered}
$$

Method 3: We'll see another way to check edge points next class.

Here is a contour plot of the function $f(x, y)=x^{2}-y^{2}$ from the previous example, with the edge of the region $x^{2}+y^{2} \leq 1$ drawn in thick black. Red regions represent lower values of f and blue regions represent higher values.

Exercise: Find all critical points of the function

$$
f(x, y)=x^{3}+3 x y+y^{2}+2 y
$$

and classify each of them as a local maximum point, local minimum point, or saddle point.

Exercise: Use the second derivative test to classify the remaining critical points $(1,-1)$, $(-1,0),(-1,1),(-1,-1)$ of the function $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$ from the preliminary homework.

Exercise: Find the largest and smallest values of the function $f(x, y)=3 x^{2}-y$ on the region $x^{2} \leq y \leq 1$, and the points at which these values are obtained. (Hint: Draw this region first.)

On the next page is a contour plot of the function $f(x, y)=3 x^{2}-y$ from this exercise. Red regions represent lower values of f and blue regions represent higher values. The boundary of the region $x^{2} \leq y \leq 1$ is drawn in thick black lines. You should confirm that your answer to this problem agrees with the picture.

