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Winter 2020

Section 1
January 13, 2020

First, some important points from the last class:

Definition: An infinite series is a sum of infinitely many terms,

∞∑
k=0

ak.

The sum of the series is the limit of the partial sums,

∞∑
k=0

ak = lim
n→∞

Sn = lim
n→∞

n−1∑
k=0

ak.

Definition: The Taylor series for f(x) centered at a is the series

∞∑
k=0

f (k)(a)

k!
(x− a)k.

Here are some important Maclaurin series (Taylor series centered at 0), and the values
of x for which they converge to the functions from which they arise (just a fact we don’t yet
have the tools to prove):

ex =
∞∑
k=0

xk

k!
−∞ < x <∞

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
−∞ < x <∞

cos(x) =
∞∑
k=0

(−1)kx2k

(2k)!
−∞ < x <∞

tan−1(x) =
∞∑
k=0

(−1)kx2k+1

2k + 1
− 1 ≤ x ≤ 1

ln(x+ 1) =
∞∑
k=1

(−1)k+1xk

k
− 1 < x ≤ 1

Some rules for series: constant multiple rule, addition and subtraction rules, tail end
rule, comparison rule, decreasing terms rule, nonnegative series rule.
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Proposition (the comparison test): Suppose
∞∑
n=0

an and
∞∑
n=0

bn are non-negative series.

If 0 ≤ bn ≤ an for all n, then

∞∑
n=0

an converges =⇒
∞∑
n=0

bn converges.

Definition: The series
∞∑
n=0

an is absolutely convergent if the series
∞∑
n=0

|an| is convergent.

Proposition: If
∞∑
n=0

an is absolutely convergent, then it is convergent.

Proposition (the alternating series test): If a series
∞∑
k=0

ak satisfies the following three

conditions, then it converges:
(1.) The terms an alternate between positive and negative.
(2.) The terms an are decreasing in absolute value, that is, |an+1| ≤ |an| for all n.
(3.) The terms an are approaching zero, lim

n→∞
an = 0.

We now have two general ways of finding the sum of a series:

1. Recognize the series as a geometric series, and use the formula for the sum of a geo-
metric series;

2. Recognize the series as a the Taylor series (that we know converges to the value of the
function) with some particular value of x.
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Example: Find the sum of the series

∞∑
k=0

(−1)k

(2k)!
.

Since this series has terms of alternating sign, and even factorials in the denominators,
we compare it to the Taylor series for cos(x):

cos(x) =
∞∑
k=0

(−1)kx2k

(2k)!
.

Substituting x = 1 gives our series:

cos(1) =
∞∑
k=0

(−1)k

(2k)!
.

We can use this to find an approximate value for cos(1), by taking a partial sum:

cos(1) =
3∑

k=0

(−1)k

(2k)!
= 1− 1

2!
+

1

4!
− 1

6!
= 1− 1

2
+

1

24
− 1

720
= .54027778 . . . .

However, this approximation isn’t correct to that many decimal places. By calcuator,

cos(1) = 0.54030230 . . .

Here we wanted to estimate the value of an infinite sum, and we used a partial sum as an
approximation. Today we will learn ways to figure out how far off our approximation could
be.

Definition: The error in using a partial sum Sn as an approximation to the actual sum
S of an infinite series is the difference between them,

error = |S − Sn| .

A number b is a bound for the error if

error ≤ b.

“Bounding the error” means finding a bound for the error.
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Alternating Series Error Bound: Suppose we have a series
∞∑
k=0

ak that meets the

conditions of the alternating series test. We saw this series must converge by looking at the
following picture:

S0

a0

S1

a1

S2

a2

S3

a3

S4

a4

S5· · · · · ·S

Here we see the even-numbered partial sums increasing toward the actual sum S, and
the odd-numbered partial sums decreasing toward S. In particular, we see that the sum S
is less than the first term a0.

We also see that, for every n, the sum S is between the partial sum Sn and the next
partial sum Sn+1. Therefore, the error in using the partial sum Sn as an approximation for
S is the difference between Sn and Sn+1:

error = |S − Sn| ≤ |Sn+1 − Sn| = an.

Rather than worrying about subscripts, just remember the first term you do NOT include
is a bound for the error.

Example: Find a bound for the error in approximating cos(1) = 1− 1

2
+

1

4!
− 1

6!
+

1

8!
−· · ·

with the fourth partial sum 1− 1

2
+

1

4!
− 1

6!
.

Since this series satisfies the alternating series test conditions, the error is at most the
absolute value of the first term not included,

error ≤ 1

8!
=

1

40320
= .00002480 . . . .
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Example: Recall that we can use the Maclaurin series for tan−1 to express π as an
infinite series:

π = 4 tan−1(1) = 4
∞∑
k=0

(−1)k(1)2k+1

2k + 1
=
∞∑
k=0

(−1)k(4)

2k + 1
.

Find a partial sum that gives π correctly to 4 decimal places (error at most .00005).

We want our error to be at most
1

20, 000
. Since this series satisfies the alternating series

test, the error is at most the absolute value of the next term. The absolute value of the kth

term is
4

2k + 1
, so we want

4

2k + 1
≤ 1

20, 000
2k + 1 ≥ 80, 000 k ≥ 39, 999.5

so to be guaranteed this accuracy, we want the first term left out to be k = 40, 000:

π ≈
39,999∑
k=0

(−1)k(4)

2k + 1
.
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Exercise: Write down an infinite sum that equals sin(1). Find a partial sum that
approximates sin(1) correctly to within three decimal places.
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Comparison Test Bounds:

Example: Use the Maclaurin series for ln(x+ 1) to approximate ln(.9) with an error of
at most .001.

ln(x+ 1) =
∞∑
k=1

(−1)k+1xk

k
− 1 < x ≤ 1

so we can substitute x = −.1 to get

ln(.9) =
∞∑
k=1

(−1)k+1(−.1)k

k
=
∞∑
k=1

−1

k(10)k

The error in using the partial sum Sn to approximate ln(.9) is the sum of the terms we did
not include:

|ln(.9)− Sn| =

∣∣∣∣∣
∞∑
k=1

−1

k(10)k
−

n∑
k=1

−1

k(10)k

∣∣∣∣∣ =
∞∑

k=n+1

1

k(10)k
.

We can compare this to a geometric series

∞∑
k=n+1

1

k(10)k
≤

∞∑
k=n+1

1

(n+ 1)(10)k
=

1
(n+1)(10)n+1

1− 1
10

=
1

(n+ 1)(10)n+1

10

9
=

1

9(n+ 1)(10)n+1

We want this error to be at most .001, so we want

1

9(n+ 1)(10)n+1
≤ 1

103
9(n+ 1)(10)n+1 ≥ 103.

Here n = 2 will do. Our approximation is

ln(.9) ≈
2∑

k=1

−1

k(10)k
= − 21

200
= −.105.

By calculator, ln(.9) = −.10536 . . . .
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Exercise: Approximate e to within 2 decimal places. Hint: e = e1, and we can express
ex as a Taylor series.
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Some examples from last class:

Example: Show that the Maclaurin series for cos(x) converges for x = 1.

This series, we see by substituting x = 1 into the Maclaurin series we had above, is

∞∑
k=0

(−1)k
1

(2k)!
.

It is easy to see that all three conditions of the alternating series test are satisfied.

Example: Show that the Maclaurin series for cos(x) converges for x = 10.

This is a harder problem, because this series doesn’t quite satisfy all the conditions of
the alternating series test. The series is

∞∑
k=0

(−1)k
102k

(2k)!
.

The terms do alternate between positive and negative, and they do approach zero, since we

have already seen that if c is any constant then lim
n→∞

cn

n!
= 0. However, the first few terms

are

1,−100

2
,
10, 000

24
, . . . ,

which are clearly not getting smaller in absolute value.

From the tail end test, it is enough to show that the tail end

∞∑
k=5

(−1)k
102k

(2k)!

converges. For this series, we have ak = (−1)k
102k

(2k)!
, and we can write

|ak+1| =
102k+2

(2k + 2)!
=

(
10 · 10 · 102k

(2k + 2)(2k + 1)(2k)!

)
=

(
10

2k + 2

)(
10

2k + 1

)
ak,

which is less than ak, because k ≥ 5 and so
10

2k + 2
< 1 and

10

2k + 1
< 1.

Exercise: Find
∞∑
k=2

(
2k + 3k−1

5k

)
.
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We can break this up into the sum of two series,
∞∑
k=2

(
2k

5k

)
, which is a geometric series

with first term 4
25

and ratio 2
5
, and

∞∑
k=2

(
3k−1

5k

)
, which is a geometric series with first term

3
25

and ratio 3
5
. Both ratios have absolute value less than one, so the sum is

4
25

1−
(
2
5

) +
3
25

1−
(
3
5

) =
4
25(
3
5

) +
3
25(
2
5

) =
1

5

(
4

3
+

3

2

)
=

17

30
.
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