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First, some important points from the last class:

Definition: An infinite series is a sum of infinitely many terms,
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The sum of the series is the limit of the partial sums,
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Definition: The Taylor series for f(z) centered at a is the series
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Here are some important Maclaurin series (Taylor series centered at 0), and the values
of x for which they converge to the functions from which they arise (just a fact we don’t yet
have the tools to prove):
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Some rules for series: constant multiple rule, addition and subtraction rules, tail end
rule, comparison rule, decreasing terms rule, nonnegative series rule.
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Proposition (the comparison test): Suppose Z a, and Z b, are non-negative series.
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Definition: The series Z ay is absolutely convergent if the series Z |a,| is convergent.
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Proposition: If Z a, is absolutely convergent, then it is convergent.
n=0

o
Proposition (the alternating series test): If a series Z ay satisfies the following three
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conditions, then it converges:

(1.) The terms a, alternate between positive and negative.
(2.) The terms a, are decreasing in absolute value, that is, |a,.1| < |a,| for all n.
(3.) The terms a,, are approaching zero, lim a, = 0.
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We now have two general ways of finding the sum of a series:

1. Recognize the series as a geometric series, and use the formula for the sum of a geo-
metric series;

2. Recognize the series as a the Taylor series (that we know converges to the value of the
function) with some particular value of .



Example: Find the sum of the series

= (-1
kz:% (2k)!

Since this series has terms of alternating sign, and even factorials in the denominators,
we compare it to the Taylor series for cos(z):

We can use this to find an approximate value for cos(1), by taking a partial sum:
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However, this approximation isn’t correct to that many decimal places. By calcuator,
cos(1) = 0.54030230. . .
Here we wanted to estimate the value of an infinite sum, and we used a partial sum as an

approximation. Today we will learn ways to figure out how far off our approximation could
be.

Definition: The error in using a partial sum S,, as an approximation to the actual sum
S of an infinite series is the difference between them,

error =S — S,|.
A number b is a bound for the error if
error < b.

“Bounding the error” means finding a bound for the error.



(e 9]

Alternating Series Error Bound: Suppose we have a series Zak that meets the

conditions of the alternating series test. We saw this series must Conve;ge by looking at the
following picture:
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Here we see the even-numbered partial sums increasing toward the actual sum S, and
the odd-numbered partial sums decreasing toward S. In particular, we see that the sum S
is less than the first term aqg.

We also see that, for every n, the sum S is between the partial sum S,, and the next
partial sum S, ;. Therefore, the error in using the partial sum S,, as an approximation for
S is the difference between S,, and S, 1:

error = |S — Sy| < |Spa1 — Sul = an.

Rather than worrying about subscripts, just remember the first term you do NOT include
is a bound for the error.
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Example: Find a bound for the error in approximating cos(1) = 1— §+ 16l + T
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Since this series satisfies the alternating series test conditions, the error is at most the
absolute value of the first term not included,
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Example: Recall that we can use the Maclaurin series for tan™! to express m as an
infinite series:
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Find a partial sum that gives 7 correctly to 4 decimal places (error at most .00005).

We want our error to be at most Since this series satisfies the alternating series
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test, the error is at most the absolute value of the next term. The absolute value of the k™

term is ——, so we want
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so to be guaranteed this accuracy, we want the first term left out to be k& = 40, 000:
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Exercise: Write down an infinite sum that equals sin(1). Find a partial sum that
approximates sin(1) correctly to within three decimal places.



Comparison Test Bounds:

Example: Use the Maclaurin series for In(z + 1) to approximate In(.9) with an error of
at most .001.

> (—1)k+1$k
1 1) = —_ —1l<x<1
n(x+1) Z 2 x <
k=1
so we can substitute r = —.1 to get
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The error in using the partial sum S,, to approximate In(.9) is the sum of the terms we did
not include:
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We can compare this to a geometric series
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We want this error to be at most .001, so we want
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Here n = 2 will do. Our approximation is
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By calculator, In(.9) = —.10536.. . ..



Exercise: Approximate e to within 2 decimal places. Hint: e = e!, and we can express
e’ as a Taylor series.



Some examples from last class:
Example: Show that the Maclaurin series for cos(x) converges for = = 1.
This series, we see by substituting £ = 1 into the Maclaurin series we had above, is
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It is easy to see that all three conditions of the alternating series test are satisfied.
Example: Show that the Maclaurin series for cos(x) converges for = = 10.

This is a harder problem, because this series doesn’t quite satisfy all the conditions of
the alternating series test. The series is
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The terms do alternate between positive and negative, and they do approach zero, since we

have already seen that if ¢ is any constant then lim C—' = 0. However, the first few terms
are e
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which are clearly not getting smaller in absolute value.

From the tail end test, it is enough to show that the tail end
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and we can write

converges. For this series, we have ay = (—1)

which is less than a,, because k > 5 and so
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We can break this up into the sum of two series, Z <5—k)7 which is a geometric series
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with first term =+ and ratio %, and Z ( " ), which is a geometric series with first term
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