Math 8

Winter 2020
Section 1
January 13, 2020
First, some important points from the last class:
Definition: An infinite series is a sum of infinitely many terms,

$$
\sum_{k=0}^{\infty} a_{k} .
$$

The sum of the series is the limit of the partial sums,

$$
\sum_{k=0}^{\infty} a_{k}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} a_{k}
$$

Definition: The Taylor series for $f(x)$ centered at a is the series

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Here are some important Maclaurin series (Taylor series centered at 0), and the values of x for which they converge to the functions from which they arise (just a fact we don't yet have the tools to prove):

$$
\begin{gathered}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad-\infty<x<\infty \\
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \quad-\infty<x<\infty \\
\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \quad-\infty<x<\infty \\
\tan ^{-1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1} \quad-1 \leq x \leq 1 \\
\ln (x+1)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}
\end{gathered} \quad-1<x \leq 11 \$
$$

Some rules for series: constant multiple rule, addition and subtraction rules, tail end rule, comparison rule, decreasing terms rule, nonnegative series rule.

Proposition (the comparison test): Suppose $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are non-negative series. If $0 \leq b_{n} \leq a_{n}$ for all n, then

$$
\sum_{n=0}^{\infty} a_{n} \text { converges } \Longrightarrow \sum_{n=0}^{\infty} b_{n} \text { converges. }
$$

Definition: The series $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent if the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ is convergent.
Proposition: If $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent, then it is convergent.
Proposition (the alternating series test): If a series $\sum_{k=0}^{\infty} a_{k}$ satisfies the following three conditions, then it converges:
(1.) The terms a_{n} alternate between positive and negative.
(2.) The terms a_{n} are decreasing in absolute value, that is, $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n.
(3.) The terms a_{n} are approaching zero, $\lim _{n \rightarrow \infty} a_{n}=0$.

We now have two general ways of finding the sum of a series:

1. Recognize the series as a geometric series, and use the formula for the sum of a geometric series;
2. Recognize the series as a the Taylor series (that we know converges to the value of the function) with some particular value of x.

Example: Find the sum of the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!}
$$

Since this series has terms of alternating sign, and even factorials in the denominators, we compare it to the Taylor series for $\cos (x)$:

$$
\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

Substituting $x=1$ gives our series:

$$
\cos (1)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!}
$$

We can use this to find an approximate value for $\cos (1)$, by taking a partial sum:

$$
\cos (1)=\sum_{k=0}^{3} \frac{(-1)^{k}}{(2 k)!}=1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}=1-\frac{1}{2}+\frac{1}{24}-\frac{1}{720}=.54027778 \ldots
$$

However, this approximation isn't correct to that many decimal places. By calcuator,

$$
\cos (1)=0.54030230 \ldots
$$

Here we wanted to estimate the value of an infinite sum, and we used a partial sum as an approximation. Today we will learn ways to figure out how far off our approximation could be.

Definition: The error in using a partial sum S_{n} as an approximation to the actual sum S of an infinite series is the difference between them,

$$
\text { error }=\left|S-S_{n}\right|
$$

A number b is a bound for the error if

$$
\text { error } \leq b
$$

"Bounding the error" means finding a bound for the error.

Alternating Series Error Bound: Suppose we have a series $\sum_{k=0}^{\infty} a_{k}$ that meets the conditions of the alternating series test. We saw this series must converge by looking at the following picture:

Here we see the even-numbered partial sums increasing toward the actual sum S, and the odd-numbered partial sums decreasing toward S. In particular, we see that the sum S is less than the first term a_{0}.

We also see that, for every n, the sum S is between the partial sum S_{n} and the next partial sum S_{n+1}. Therefore, the error in using the partial sum S_{n} as an approximation for S is the difference between S_{n} and S_{n+1} :

$$
\text { error }=\left|S-S_{n}\right| \leq\left|S_{n+1}-S_{n}\right|=a_{n} .
$$

Rather than worrying about subscripts, just remember the first term you do NOT include is a bound for the error.

Example: Find a bound for the error in approximating $\cos (1)=1-\frac{1}{2}+\frac{1}{4!}-\frac{1}{6!}+\frac{1}{8!}-\cdots$ with the fourth partial sum $1-\frac{1}{2}+\frac{1}{4!}-\frac{1}{6!}$.

Since this series satisfies the alternating series test conditions, the error is at most the absolute value of the first term not included,

$$
\text { error } \leq \frac{1}{8!}=\frac{1}{40320}=.00002480 \ldots
$$

Example: Recall that we can use the Maclaurin series for $\tan ^{-1}$ to express π as an infinite series:

$$
\pi=4 \tan ^{-1}(1)=4 \sum_{k=0}^{\infty} \frac{(-1)^{k}(1)^{2 k+1}}{2 k+1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(4)}{2 k+1}
$$

Find a partial sum that gives π correctly to 4 decimal places (error at most .00005).
We want our error to be at most $\frac{1}{20,000}$. Since this series satisfies the alternating series test, the error is at most the absolute value of the next term. The absolute value of the $k^{\text {th }}$ term is $\frac{4}{2 k+1}$, so we want

$$
\frac{4}{2 k+1} \leq \frac{1}{20,000} \quad 2 k+1 \geq 80,000 \quad k \geq 39,999.5
$$

so to be guaranteed this accuracy, we want the first term left out to be $k=40,000$:

$$
\pi \approx \sum_{k=0}^{39,999} \frac{(-1)^{k}(4)}{2 k+1}
$$

Exercise: Write down an infinite sum that equals $\sin (1)$. Find a partial sum that approximates $\sin (1)$ correctly to within three decimal places.

Comparison Test Bounds:

Example: Use the Maclaurin series for $\ln (x+1)$ to approximate $\ln (.9)$ with an error of at most . 001 .

$$
\ln (x+1)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k} \quad-1<x \leq 1
$$

so we can substitute $x=-.1$ to get

$$
\ln (.9)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(-.1)^{k}}{k}=\sum_{k=1}^{\infty} \frac{-1}{k(10)^{k}}
$$

The error in using the partial sum S_{n} to approximate $\ln (.9)$ is the sum of the terms we did not include:

$$
\left|\ln (.9)-S_{n}\right|=\left|\sum_{k=1}^{\infty} \frac{-1}{k(10)^{k}}-\sum_{k=1}^{n} \frac{-1}{k(10)^{k}}\right|=\sum_{k=n+1}^{\infty} \frac{1}{k(10)^{k}}
$$

We can compare this to a geometric series

$$
\sum_{k=n+1}^{\infty} \frac{1}{k(10)^{k}} \leq \sum_{k=n+1}^{\infty} \frac{1}{(n+1)(10)^{k}}=\frac{\frac{1}{(n+1)(10)^{n+1}}}{1-\frac{1}{10}}=\frac{1}{(n+1)(10)^{n+1}} \frac{10}{9}=\frac{1}{9(n+1)(10)^{n+1}}
$$

We want this error to be at most .001 , so we want

$$
\frac{1}{9(n+1)(10)^{n+1}} \leq \frac{1}{10^{3}} \quad 9(n+1)(10)^{n+1} \geq 10^{3} .
$$

Here $n=2$ will do. Our approximation is

$$
\ln (.9) \approx \sum_{k=1}^{2} \frac{-1}{k(10)^{k}}=-\frac{21}{200}=-.105
$$

By calculator, $\ln (.9)=-.10536 \ldots$

Exercise: Approximate e to within 2 decimal places. Hint: $e=e^{1}$, and we can express e^{x} as a Taylor series.

Some examples from last class:
Example: Show that the Maclaurin series for $\cos (x)$ converges for $x=1$.
This series, we see by substituting $x=1$ into the Maclaurin series we had above, is

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k)!}
$$

It is easy to see that all three conditions of the alternating series test are satisfied.
Example: Show that the Maclaurin series for $\cos (x)$ converges for $x=10$.
This is a harder problem, because this series doesn't quite satisfy all the conditions of the alternating series test. The series is

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{10^{2 k}}{(2 k)!}
$$

The terms do alternate between positive and negative, and they do approach zero, since we have already seen that if c is any constant then $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$. However, the first few terms are

$$
1,-\frac{100}{2}, \frac{10,000}{24}, \ldots,
$$

which are clearly not getting smaller in absolute value.
From the tail end test, it is enough to show that the tail end

$$
\sum_{k=5}^{\infty}(-1)^{k} \frac{10^{2 k}}{(2 k)!}
$$

converges. For this series, we have $a_{k}=(-1)^{k} \frac{10^{2 k}}{(2 k)!}$, and we can write

$$
\left|a_{k+1}\right|=\frac{10^{2 k+2}}{(2 k+2)!}=\left(\frac{10 \cdot 10 \cdot 10^{2 k}}{(2 k+2)(2 k+1)(2 k)!}\right)=\left(\frac{10}{2 k+2}\right)\left(\frac{10}{2 k+1}\right) a_{k},
$$

which is less than a_{k}, because $k \geq 5$ and so $\frac{10}{2 k+2}<1$ and $\frac{10}{2 k+1}<1$.
Exercise: Find $\sum_{k=2}^{\infty}\left(\frac{2^{k}+3^{k-1}}{5^{k}}\right)$.

We can break this up into the sum of two series, $\sum_{k=2}^{\infty}\left(\frac{2^{k}}{5^{k}}\right)$, which is a geometric series with first term $\frac{4}{25}$ and ratio $\frac{2}{5}$, and $\sum_{k=2}^{\infty}\left(\frac{3^{k-1}}{5^{k}}\right)$, which is a geometric series with first term $\frac{3}{25}$ and ratio $\frac{3}{5}$. Both ratios have absolute value less than one, so the sum is

$$
\frac{\frac{4}{25}}{1-\left(\frac{2}{5}\right)}+\frac{\frac{3}{25}}{1-\left(\frac{3}{5}\right)}=\frac{\frac{4}{25}}{\left(\frac{3}{5}\right)}+\frac{\frac{3}{25}}{\left(\frac{2}{5}\right)}=\frac{1}{5}\left(\frac{4}{3}+\frac{3}{2}\right)=\frac{17}{30} .
$$

