Math 8
Winter 2020
Section 1
January 15, 2020
First, the takeaway from last class:
Definition: The error in using a partial sum S_{n} as an approximation to the actual sum S of an infinite series is the difference between them,

$$
\text { error }=\left|S-S_{n}\right|
$$

A number b is a bound for the error if

$$
\text { error } \leq b
$$

"Bounding the error" means finding a bound for the error.
Alternating Series Error Bound: Suppose we have a series $\sum_{k=0}^{\infty} a_{k}$ that meets the conditions of the alternating series test. Then, the error in using the partial sum $S_{n}=\sum_{k=0}^{n-1} a_{k}$ as an approximation for S is bounded by the difference between S_{n} and S_{n+1}, which is the last term of S_{n+1} :

$$
\text { error }=\left|S-S_{n}\right| \leq\left|S_{n+1}-S_{n}\right|=\left|\sum_{k=0}^{n} a_{k}-\sum_{k=0}^{n-1} a_{k}\right|=\left|a_{n}\right|
$$

Rather than worrying about subscripts, just remember the first term you do NOT include is a bound for the error.

Comparison Test Error Bound: Since the difference

$$
S-S_{n}=\sum_{k=0}^{\infty} a_{k}-\sum_{k=0}^{n-1} a_{k}=\sum_{k=n}^{\infty} a_{k}
$$

is itself a series, we can also find a bound by using the comparison rule:
If $a_{n} \leq b_{n}$ for all n, then

$$
\left(\sum_{n=0}^{\infty} a_{n}=A \& \sum_{n=0}^{\infty} b_{n}=B\right) \Longrightarrow A \leq B
$$

Here is one more convergence test.
Proposition: (the ratio test) For any series, if

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

then

$$
\sum_{n=0}^{\infty} a_{n} \text { is } \begin{cases}\text { absolutely convergent } & \text { if } L<1 \\ \text { divergent } & \text { if } L>1 \\ \text { we cannot tell from this test } & \text { if } L=1\end{cases}
$$

Example: Show the Maclaurin series for e^{x},

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

converges for all x.
Let x be any particular number. (So x is a constant.) To apply the ratio test to this series, we must look at the limit of (the absolute value of) the ratio of successive terms,

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n}(x)}{n!(n+1)}}{\frac{x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0 .
$$

Since the limit is less than 1, the series converges.

Radius of Convergence

Taylor series centered at $x=a$

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

are examples of power series centered at $x=a$

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k} \quad\left(\text { each } c_{k} \text { is a constant }\right)
$$

We can use a power series to define a function,

$$
g(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k},
$$

whose domain is the set of x for which the power series converges.
Definition: The radius of convergence of the power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ is R, where $0 \leq R \leq \infty$, if the power series converges absolutely for $|x-a|<R$ and diverges for $|x-a|>R$.
(It may or may not converge for $|x-a|=R$.)
Proposition: Every power series has a radius of convergence.
Example: The geometric series $\sum_{k=0}^{\infty} x^{k}$ converges for $|x|<1$ and diverges for $|x|>1$, so its radius of convergence is $R=1$.

Theorem: Suppose the function $f(x)$ is defined by a power series centered at a with radius of convergence R, meaning that for $|x-a|<R$ we have

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k} .
$$

Then that power series is the Taylor series for $f(x)$ centered at a.
Example: Because the geometric series $\sum_{k=0}^{\infty} x^{k}$ converges to $\frac{1}{1-x}$ for $|x|<1$ and diverges for $|x|>1$, we know it must be the Maclaurin series for the function $f(x)=\frac{1}{1-x}$. (We can also check this by using the formula for a Taylor series.)

It may be that there is no power series expansion centered at a that converges to $f(x)$ near a.

This must mean that the Taylor series for $f(x)$ centered at $x=a$ does not converge to $f(x)$ in any interval around a. In fact, there are cases in which the Taylor series for $f(x)$ converges to another function entirely.

Example: Define

$$
f(x)= \begin{cases}e^{-\left(x^{-2}\right)} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

This function has derivatives of all orders at 0 ; in fact, for every n, we have

$$
f^{(n)}(0)=0 .
$$

Therefore, the Maclaurin series for $f(x)$ is

$$
\sum_{k=0}^{\infty}\left(0 \cdot \frac{x^{k}}{k!}\right)
$$

which converges for every x, but (except at $x=0$) it does not converge to $f(x)$.
Example: A simpler example is $f(x)=|x|=\left(x^{2}\right)^{\frac{1}{2}}$. Its Taylor series about $a=1$ is

$$
1+(x-1)+0(x-1)^{2}+0(x-1)^{3}+0(x-1)^{4}+0(x-1)^{5}+\cdots=x
$$

which converges for all x, but converges to $f(x)$ only for $x \geq 0$.

We can often use the ratio test to find the radius of convergence.
Example: Find the radius of convergence of the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k^{2}}$. (Notice that we can see immediately the center is 0 .)

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)^{2}}}{\frac{x^{n}}{n^{2}}}\right|=\lim _{n \rightarrow \infty}\left|x \frac{n^{2}}{(n+1)^{2}}\right|=|x| .
$$

By the ratio test, this converges absolutely for $|x|<1$ and diverges for $|x|>1$.
The radius of convergence is 1 .
Example: Find the radius of convergence of the power series $\sum_{k=0}^{\infty} k(x-1)^{k}$. For what values of x do we know this series converges?

New Taylor Series from Old

If we compute the Taylor series for $f(x)$ centered at a directly from the formula for Taylor series, we can use the ratio test to find the radius of convergence. For x within that radius of convergence of a, we hope that the Taylor series for $f(x)$ not only converges, but converges to $f(x)$. The ratio test cannot tell us that.

However, there is another way to arrive at Taylor series, and know they converge to the function.

Theorem: Suppose the function $f(x)$ is defined by a power series centered at a with radius of convergence R,

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k} .
$$

Then the term-by-term derivative of the power series has the same radius of convergence, and gives the derivative of $f(x)$:

$$
f^{\prime}(x)=\sum_{k=0}^{\infty} k c_{k}(x-a)^{k-1} .
$$

The same is true for the term-by-term indefinite integral,

$$
\int f(x) d x=C+\sum_{k=0}^{\infty} c_{k} \frac{(x-a)^{k+1}}{k+1}
$$

and definite integral, as long as b and d are in $(a-R, a+R)$,

$$
\int_{b}^{d} f(x) d x=\left.\left[\sum_{k=0}^{\infty} c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right|_{x=b} ^{x=d}=\sum_{k=0}^{\infty}\left(\left.\left[c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right|_{x=b} ^{x=d}\right)
$$

In particular, for $a-R<x<a+R$ (inside the radius of convergence)

$$
\int_{a}^{x} f(u) d u=\left.\left[\sum_{k=0}^{\infty} c_{k} \frac{(u-a)^{k+1}}{k+1}\right]\right|_{u=a} ^{u=x}=\sum_{k=0}^{\infty}\left(\left[c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right)
$$

Example: It is possible to show that for all x (in other words, with radius of convergence $R=\infty$), the Maclaurin series for $\sin (x)$ converges to $\sin (x)$:

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x^{(2 k+1)}}{(2 k+1)!}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots .
$$

By this theorem we can take derivatives of each side, differentiating the power series term-by-term, to get

$$
\cos (x)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{(2 k+1) x^{2 k}}{(2 k+1)!}\right)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x^{2 k}}{(2 k)!}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots,
$$

with the same radius of convergence $R=\infty$. This shows the Maclaurin series for $\cos (x)$ also converges to $\cos (x)$ for every x.

We can also integrate series term-by-term. Since

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

we can take an antiderivative (remembering the constant of integration) to get

$$
-\cos (x)=C+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}=\frac{x^{8}}{8!}+\cdots
$$

Substituting $x=0$ gives $-1=C$, so we get

$$
\begin{gathered}
-\cos (x)=-1+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}=\frac{x^{8}}{8!}+\cdots \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
\end{gathered}
$$

Example: We have seen that for $|x|<1$ we have

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

Substituting $x=-u^{2}$, we get

$$
\frac{1}{1+u^{2}}=\sum_{k=0}^{\infty}\left(-u^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} u^{2 k}
$$

This holds for $\left|-u^{2}\right|<1$, which is to say, $|u|<1$. Applying our theorem, we get

$$
\begin{aligned}
\int_{0}^{x} \frac{1}{1+u^{2}} d u & =\int_{0}^{x}\left(\sum_{k=0}^{\infty}(-1)^{k} u^{2 k}\right) d x=\sum_{k=0}^{\infty}\left(\int_{0}^{x}(-1)^{k} u^{2 k} d u\right) \\
\arctan (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

By the theorem, this has the same radius of convergence, namely 1 , so this is true for $|x|<1$.
The theorem doesn't tell us whether this is true for $|x|=1$, that is, for $x=1$ or for $x=-1$. It turns out that it is true in both cases, so the interval of convergence for this series is $[-1,1]$, and it converges to $\arctan (x)$ for every x in that interval.

Exercise: For $|u| \leq 1$, we know

$$
\frac{1}{1-u}=\sum_{k=0}^{\infty} u^{k} .
$$

Integrate both sides from 0 to x.
This should allow you to find a power series expansion for $\ln (1-x)$. For what values of x do we know this holds?

Random Note: Because we can differentiate power series term-by-term, we can use Taylor series to solve differential equations. A simple example of a differential equation is

$$
\frac{d y}{d x}=y
$$

where y is a function of x. This equation says that y is its own derivative. To solve this using Taylor series, we assume we can express y as a Taylor series

$$
y=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

and then use the equation

$$
\begin{gathered}
\frac{d y}{d x}=y \\
\frac{d}{d x}\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)=\sum_{k=0}^{\infty} c_{k} x^{k}
\end{gathered}
$$

For the next step, the derivative of a constant is zero, which is why we start with $k=1$,

$$
\sum_{k=1}^{\infty} k c_{k} x^{k-1}=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

For the next step, we rewrite the sum on the left using $i=k-1$,

$$
\sum_{i=0}^{\infty}(i+1) c_{i+1} x^{i}=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

Now we can use k in place of i

$$
\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

The coefficients of each x^{k} must be equal:

$$
\begin{gathered}
(k+1) c_{k+1}=c_{k} \quad c_{k+1}=\frac{c_{k}}{k+1} \\
c_{1}=\frac{c_{0}}{1} \quad c_{2}=\frac{c_{1}}{2}=\frac{c_{0}}{2} \quad c_{3}=\frac{c_{2}}{3}=\frac{c_{0}}{3 \cdot 2} \quad c_{4}=\frac{c_{3}}{4}=\frac{c_{0}}{4 \cdot 3 \cdot 2} \quad c_{k}=\frac{c_{0}}{k!} \\
y=\sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} \frac{c_{0}}{k!} x^{k}=c_{0} \sum_{k=0}^{\infty} \frac{x^{k}}{k!}=c_{0} e^{x} .
\end{gathered}
$$

That is, the functions that are their own derivatives (and can be written as Taylor series) are the constant multiples of e^{x}.

