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January 15, 2020

First, the takeaway from last class:

Definition: The error in using a partial sum Sn as an approximation to the actual sum
S of an infinite series is the difference between them,

error = |S − Sn| .

A number b is a bound for the error if

error ≤ b.

“Bounding the error” means finding a bound for the error.

Alternating Series Error Bound: Suppose we have a series
∞∑
k=0

ak that meets the

conditions of the alternating series test. Then, the error in using the partial sum Sn =
n−1∑
k=0

ak

as an approximation for S is bounded by the difference between Sn and Sn+1, which is the
last term of Sn+1:

error = |S − Sn| ≤ |Sn+1 − Sn| =

∣∣∣∣∣
n∑

k=0

ak −
n−1∑
k=0

ak

∣∣∣∣∣ = |an|.

Rather than worrying about subscripts, just remember the first term you do NOT include
is a bound for the error.

Comparison Test Error Bound: Since the difference

S − Sn =
∞∑
k=0

ak −
n−1∑
k=0

ak =
∞∑
k=n

ak

is itself a series, we can also find a bound by using the comparison rule:
If an ≤ bn for all n, then(

∞∑
n=0

an = A &
∞∑
n=0

bn = B

)
=⇒ A ≤ B.
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Here is one more convergence test.

Proposition: (the ratio test) For any series, if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,

then

∞∑
n=0

an is


absolutely convergent if L < 1;

divergent if L > 1;

we cannot tell from this test if L = 1.

Example: Show the Maclaurin series for ex,

∞∑
k=0

xk

k!

converges for all x.

Let x be any particular number. (So x is a constant.) To apply the ratio test to this
series, we must look at the limit of (the absolute value of) the ratio of successive terms,

lim
n→∞

∣∣∣∣∣
xn+1

(n+1)!

xn

n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
xn(x)

n!(n+1)

xn

n!

∣∣∣∣∣ = lim
n→∞

|x|
n + 1

= 0.

Since the limit is less than 1, the series converges.
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Radius of Convergence

Taylor series centered at x = a

∞∑
k=0

f (k)(a)

k!
(x− a)k

are examples of power series centered at x = a

∞∑
k=0

ck(x− a)k (each ck is a constant).

We can use a power series to define a function,

g(x) =
∞∑
k=0

ck(x− a)k,

whose domain is the set of x for which the power series converges.

Definition: The radius of convergence of the power series
∞∑
k=0

ck(x − a)k is R, where

0 ≤ R ≤ ∞, if the power series converges absolutely for |x − a| < R and diverges for
|x− a| > R.

(It may or may not converge for |x− a| = R.)

Proposition: Every power series has a radius of convergence.

Example: The geometric series
∞∑
k=0

xk converges for |x| < 1 and diverges for |x| > 1, so

its radius of convergence is R = 1.
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Theorem: Suppose the function f(x) is defined by a power series centered at a with
radius of convergence R, meaning that for |x− a| < R we have

f(x) =
∞∑
k=0

ck(x− a)k.

Then that power series is the Taylor series for f(x) centered at a.

Example: Because the geometric series
∞∑
k=0

xk converges to
1

1− x
for |x| < 1 and diverges

for |x| > 1, we know it must be the Maclaurin series for the function f(x) =
1

1− x
. (We can

also check this by using the formula for a Taylor series.)

It may be that there is no power series expansion centered at a that converges to f(x)
near a.

This must mean that the Taylor series for f(x) centered at x = a does not converge to
f(x) in any interval around a. In fact, there are cases in which the Taylor series for f(x)
converges to another function entirely.

Example: Define

f(x) =

{
e−(x

−2) if x 6= 0;

0 if x = 0.

This function has derivatives of all orders at 0; in fact, for every n, we have

f (n)(0) = 0.

Therefore, the Maclaurin series for f(x) is

∞∑
k=0

(
0 · x

k

k!

)
,

which converges for every x, but (except at x = 0) it does not converge to f(x).

Example: A simpler example is f(x) = |x| = (x2)
1
2 . Its Taylor series about a = 1 is

1 + (x− 1) + 0(x− 1)2 + 0(x− 1)3 + 0(x− 1)4 + 0(x− 1)5 + · · · = x,

which converges for all x, but converges to f(x) only for x ≥ 0.
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We can often use the ratio test to find the radius of convergence.

Example: Find the radius of convergence of the series
∞∑
k=0

xk

k2
. (Notice that we can see

immediately the center is 0.)

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
xn+1

(n+1)2

xn

n2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n2

(n + 1)2

∣∣∣∣ = |x|.

By the ratio test, this converges absolutely for |x| < 1 and diverges for |x| > 1.

The radius of convergence is 1.

Example: Find the radius of convergence of the power series
∞∑
k=0

k(x − 1)k. For what

values of x do we know this series converges?
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New Taylor Series from Old

If we compute the Taylor series for f(x) centered at a directly from the formula for Taylor
series, we can use the ratio test to find the radius of convergence. For x within that radius of
convergence of a, we hope that the Taylor series for f(x) not only converges, but converges
to f(x). The ratio test cannot tell us that.

However, there is another way to arrive at Taylor series, and know they converge to the
function.

Theorem: Suppose the function f(x) is defined by a power series centered at a with
radius of convergence R,

f(x) =
∞∑
k=0

ck(x− a)k.

Then the term-by-term derivative of the power series has the same radius of convergence,
and gives the derivative of f(x):

f ′(x) =
∞∑
k=0

kck(x− a)k−1.

The same is true for the term-by-term indefinite integral,∫
f(x) dx = C +

∞∑
k=0

ck
(x− a)k+1

k + 1
,

and definite integral, as long as b and d are in (a−R, a + R),

∫ d

b

f(x) dx =

[
∞∑
k=0

ck
(x− a)k+1

k + 1

] ∣∣∣∣∣
x=d

x=b

=
∞∑
k=0

[ck (x− a)k+1

k + 1

] ∣∣∣∣∣
x=d

x=b

 .

In particular, for a−R < x < a + R (inside the radius of convergence)∫ x

a

f(u) du =

[
∞∑
k=0

ck
(u− a)k+1

k + 1

] ∣∣∣∣∣
u=x

u=a

=
∞∑
k=0

([
ck

(x− a)k+1

k + 1

])
.
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Example: It is possible to show that for all x (in other words, with radius of convergence
R =∞), the Maclaurin series for sin(x) converges to sin(x):

sin(x) =
∞∑
k=0

(−1)k
(

x(2k+1)

(2k + 1)!

)
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

By this theorem we can take derivatives of each side, differentiating the power series term-
by-term, to get

cos(x) =
∞∑
k=0

(−1)k
(

(2k + 1)x2k

(2k + 1)!

)
=
∞∑
k=0

(−1)k
(

x2k

(2k)!

)
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

with the same radius of convergence R =∞. This shows the Maclaurin series for cos(x) also
converges to cos(x) for every x.

We can also integrate series term-by-term. Since

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

we can take an antiderivative (remembering the constant of integration) to get

− cos(x) = C +
x2

2!
− x4

4!
+

x6

6!
=

x8

8!
+ · · ·

Substituting x = 0 gives −1 = C, so we get

− cos(x) = −1 +
x2

2!
− x4

4!
+

x6

6!
=

x8

8!
+ · · ·

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · · =

∞∑
k=0

(−1)k
x2k

(2k)!
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Example: We have seen that for |x| < 1 we have

1

1− x
=
∞∑
k=0

xk.

Substituting x = −u2, we get

1

1 + u2
=
∞∑
k=0

(−u2)k =
∞∑
k=0

(−1)ku2k.

This holds for | − u2| < 1, which is to say, |u| < 1. Applying our theorem, we get∫ x

0

1

1 + u2
du =

∫ x

0

(
∞∑
k=0

(−1)ku2k

)
dx =

∞∑
k=0

(∫ x

0

(−1)ku2k du

)
;

arctan(x) =
∞∑
k=0

(−1)k
x2k+1

2k + 1
= x− x3

3
+

x5

5
− x7

7
+ · · · .

By the theorem, this has the same radius of convergence, namely 1, so this is true for |x| < 1.
The theorem doesn’t tell us whether this is true for |x| = 1, that is, for x = 1 or for

x = −1. It turns out that it is true in both cases, so the interval of convergence for this
series is [−1, 1], and it converges to arctan(x) for every x in that interval.
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Exercise: For |u| ≤ 1, we know

1

1− u
=
∞∑
k=0

uk.

Integrate both sides from 0 to x.
This should allow you to find a power series expansion for ln(1− x). For what values of

x do we know this holds?
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Random Note: Because we can differentiate power series term-by-term, we can use
Taylor series to solve differential equations. A simple example of a differential equation is

dy

dx
= y,

where y is a function of x. This equation says that y is its own derivative. To solve this
using Taylor series, we assume we can express y as a Taylor series

y =
∞∑
k=0

ckx
k,

and then use the equation
dy

dx
= y,

d

dx

(
∞∑
k=0

ckx
k

)
=
∞∑
k=0

ckx
k

For the next step, the derivative of a constant is zero, which is why we start with k = 1,

∞∑
k=1

kckx
k−1 =

∞∑
k=0

ckx
k

For the next step, we rewrite the sum on the left using i = k − 1,

∞∑
i=0

(i + 1)ci+1x
i =

∞∑
k=0

ckx
k

Now we can use k in place of i

∞∑
k=0

(k + 1)ck+1x
k =

∞∑
k=0

ckx
k

The coefficients of each xk must be equal:

(k + 1)ck+1 = ck ck+1 =
ck

k + 1

c1 =
c0
1

c2 =
c1
2

=
c0
2

c3 =
c2
3

=
c0

3 · 2
c4 =

c3
4

=
c0

4 · 3 · 2
ck =

c0
k!

y =
∞∑
k=0

ckx
k =

∞∑
k=0

c0
k!
xk = c0

∞∑
k=0

xk

k!
= c0e

x.

That is, the functions that are their own derivatives (and can be written as Taylor series)
are the constant multiples of ex.
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