Math 8

Winter 2020
Section 1
January 23, 2020

First, some important points from the last class:
Two methods to compute volumes of revolution:
Volumes by discs or washers: Integrate the cross-sectional area along the axis around which you are revolving. In this picture, we revolve around the $x$-axis, and we get $\int_{a}^{b} A(x) d x$. The cross-section is a disc of radius $x$ with a disc of radius $x^{2}$ removed. We have $A(x)=$ $\pi(x)^{2}-\pi\left(x^{2}\right)^{2}$.



Volumes by shells: Integrate the cylindrical-sectional area along an axis perpendicular to the one around which you are revolving. In this picture, we revolve around the $x$-axis, and we get $\int_{c}^{d} C(y) d y$. The cylindrical section is a cylinder of radius $y$ and length $(\sqrt{ }(y)-y)$. We get $C(y)=2 \pi y(\sqrt{( } y)-y)$.



Preliminary Homework:

1. Find the derivative of the function $f(x)=x \cos (x)$ :

$$
\frac{d}{d x}(x \cos (x))=\cos (x)-x \sin (x)
$$

2. Take the antiderivative with respect to $x$ of both sides of the equation you found in part 1. Then evaluate every integral in the resulting equation except for $\int x \sin (x) d x$. (Don't forget the Fundamental Theorem of Calculus.)

$$
\begin{aligned}
\int\left(\frac{d}{d x}(x \cos (x))\right) d x & =\int \cos (x) d x-\int x \sin (x) d x \\
(x \cos (x))+C & =\sin (x)-\int x \sin (x) d x
\end{aligned}
$$

3. Use part 2 to find an antiderivative for $x \sin (x)$ :

$$
\int x \sin (x) d x=\sin (x)-x \cos (x)+C .
$$

We can do this in general:

$$
\begin{gathered}
\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
\int \frac{d}{d x}(f(x) g(x)) d x=\int f(x) g^{\prime}(x) d x+\int g(x) f^{\prime}(x) d x \\
\int f(x) g^{\prime}(x) d x=\int \frac{d}{d x}(f(x) g(x)) d x-\int g(x) f^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x \\
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
\end{gathered}
$$

Rewrite using $u=f(x) \quad v=g(x)$
$d u=f^{\prime}(x) d x \quad d v=g^{\prime}(x) d x:$

$$
\int u d v=u v-\int v d u
$$

This method is called integration by parts. If we are computing a definite integral, we get

$$
\int_{a}^{b} u(x) \frac{d v(x)}{d x} d x=\left.(u(x) v(x))\right|_{x=a} ^{x=b}-\int_{a}^{b} v(x) \frac{d u(x)}{d x} d x
$$

Example: Find $\int x \sin (x) d x$ :

$$
\begin{gathered}
\int \underbrace{\sqrt{x}}_{u} \underbrace{\sin (x) d x}_{d v} \\
u=x \quad d v=\sin (x) d x \\
d u=d x \quad v=-\cos (x) \\
\int x \sin (x) d x=\int u d v=u v-\int v d u= \\
-x \cos (x)-\int-\cos (x) d x=-x \cos (x)+\int \cos (x) d x= \\
-x \cos (x)+\sin (x)+C
\end{gathered}
$$

Example: Find $\int \ln x d x$ :

$$
\begin{gathered}
\int \underbrace{\boxed{\ln x}}_{u} \underbrace{\boxed{d x}}_{d v} \\
u=\ln (x) \quad d v=d x \\
d u=\frac{1}{x} d x \quad v=x \\
\int \ln x d x=\int u d v=u v-\int v d u= \\
x \ln (x)-\int x \cdot \frac{1}{x} d x=x \ln (x)-\int 1 d x=x \ln (x)-x+C
\end{gathered}
$$

Strategy: Choose $u$ to become simpler when differentiated, and $d v$ to become no more complicated when integrated.

Example Find $\int e^{x} \cos x d x$.
Try integration by parts, with $u=e^{x}$ and $d v=\cos x d x$. This gives us $d u=e^{x} d x$ and $v=\sin x$.

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

To find $\int e^{x} \sin x d x$, we try integration by parts again, with $u=e^{x}$ and $d v=\sin x d x$. This gives us $d u=e^{x} d x$ and $v=-\cos x$.

$$
\int e^{x} \sin x d x=e^{x}(-\cos x)-\int e^{x}(-\cos x) d x=-e^{x} \cos x+\int e^{x} \cos x d x
$$

Substituting into our earlier equation, this gives

$$
\begin{gathered}
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x== \\
e^{x} \sin x-\left(-e^{x} \cos x+\int e^{x} \cos x d x\right)= \\
e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{gathered}
$$

At first glance, we are back to finding our original integral $\int e^{x} \cos x d x$, which is not helpful. However, we can use this equation to solve for $\int e^{x} \cos x d x$, remembering there is an unwritten constant of integration:

$$
\begin{aligned}
& 2 \int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x+C \\
& \int e^{x} \cos x d x=\frac{e^{x} \sin x+e^{x} \cos x}{2}+C
\end{aligned}
$$

Exercise: Use integration by parts to find $\int \tan ^{-1}(x) d x$.
Hint: Look at the strategy we used to integrate $\ln (x)$, setting $d v=d x$. Recall that $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{x^{2}+1}$.

Exercise: Use volumes by shells to find the volume of the solid obtained by revolving the region below the curve $y=x e^{x}$, for $0 \leq x \leq 1$, around the $y$-axis. Note that we are revolving around the $y$-axis, so to use volumes by shells, we integrate along the $x$-axis.

Hint: To evaluate the integral, you may need to use integration by parts twice.

Note: We can't really use volumes by washers to find this volume. To find the crosssectional area perpendicular to the $y$-axis, we would have to solve for $x$ as a function of $y$ in the equation $y=x e^{x}$.

Exercise: Use integration by parts to express $\int x^{n} e^{x} d x$ in terms of $\int x^{n-1} e^{x} d x$.

Use repeated applications of this formula to find $\int x^{4} e^{x} d x$.

Exercise: Suppose a piece of wire laid out along the portion of the $x$-axis $0 \leq x \leq \pi$ has mass density at point $x$ given by the function

$$
\rho(x)=e^{x} \sin (x) .
$$

Find the total mass of the piece of wire.

