
Math 8
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Section 1
January 24, 2020

First, some important points from the last class:

Theorem (integration by parts):∫
u dv = uv −

∫
v du

The strategy is to choose u to become simpler when differentiated, and v
to become no more complicated when integrated.

Example: ∫
tan−1(x) dx =

∫
u dv

u = tan−1(x) dv = dx

du =
1

x2 + 1
dx v = x∫

u dv = uv −
∫
v du = x tan−1(x)−

∫
x

x2 + 1
dx =

x tan−1(x)− 1

2
ln(x2 + 1) + C.
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Today: More Riemann sums and applications of integration.

Work:

If a force of magnitude F acts (in the direction of motion) on an object
moving a distance d, the work done by that force on that object is the product
of force and distance:

W = Fd.

If the force acts opposite to the direction of motion, the work it does is
negative.

If the force is variable, or not all parts of the object move the same
distance, we may use an integral to find work.

In SI units we measure distance in meters, force in newtons, and work in
joules.

Newtons (N) and joules (J) are derived from the basic units of distance
(meter, m), mass (kilogram, kg), and time (second, s).

N =
kg ·m

s2
J = N ·m.

Work (in joules) = Force (in newtons) × Distance (in meters).
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Example: An object moves along the x-axis, from x = a to x = b (in
meters). You may assume a < b.

When the object is at point xmeters, it is acted on by a force of magnitude
F (x) newtons in the positive x-direction.

1. Approximate the work done on the object, by dividing its path up into
small segments, approximating the work done as it moves along each
segment, and taking a sum. Be sure to explain what you are doing. (If
your answer involves a quantity such as ∆x, say what ∆x represents.
Show how you approximated the work done along each segment.)

2. By taking an appropriate limit, express the work done on the object as
a definite integral.

Note: Your answers above should include units.
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This gives us a formula we can use: To find work, integrate force with
respect to distance. If it makes sense (in the context of the problem) to treat
an object as a single point moving along the x-axis from x = a to x = b,
acted on by a force that at point x has magnitude F (x) in the x-direction (so
the magnitude of the force depends only on the location x, not, for example,
on time), then we can compute the work as

Work =

∫ b

a

F (x) dx.

When we cannot apply this formula:

When different parts of the object move different distances. (Example:
pulling a rope to the top of a wall. We might be able to manipulate this one
so we can apply the formula, but it does not naturally fit.)

When the force on the object depends on time, not just location. (Exam-
ple: Launching a rocket that loses fuel, and therefore mass, as time passes.
We might be able to use this formula with this problem if we could figure
out how much fuel was lost when it reached height x, so we could express
the mass, and therefore the force, as a function of x.)

In such situations, you can start from basics, approximating the work by
a Riemann sum and then taking a limit to get an integral.
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Example: The magnitude of the force of earth’s gravity acting on a

nearby object is F =
Cm

r2
, where C is a constant (the product of the earth’s

mass and the universal gravitational constant), m is the mass of the object,
and r is the distance from the object to the center of the earth.

How much work must be done against the force of gravity to launch a
satellite of mass m from the surface of the earth (radius a) to height h above
the earth’s surface?

(Physics note: The force of gravity is not the only force acting opposite
to the satellite’s motion. There is also air resistance. This means the total
work that must be done against the opposing forces is greater than just the
work that must be done against gravity.

This is often the case with calculus work problems; we compute the work
done by, or against, one particular force, which is not the only force acting.
You can learn how to account for air resistance in a differential equations
class.)

(Another physics note: Notice that the limit as h → ∞ here is finite.
Since work more or less equals energy, this means that imparting a finite
amount of energy to the satellite will enable it to move as far away from the
earth as you like. If you simply launch the satellite up from the earth’s surface
(rather than carrying it up via some propulsion mechanism), the amount of
energy depends on its initial velocity. “Escape velocity” is the initial velocity
sufficient to guarantee it will not fall back to the earth’s surface.)

(Physics meta-note: The physics notes may not be technically complete,
or completely precise. The principles involved should be correct, however,
even though the subtleties may be glossed over.)
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Probability Density Functions

If you roll a (fair) 6-sided die, there are 6 equally likely outcomes, so the

probability of rolling a 1 is
1

6
and the probability of rolling a 3 is

1

6
.

If you roll two dice, there are 11 possible outcomes for the sum of the
numbers (from 2 to 12), but they are not equally likely. The probability of

rolling a 2 is
1

36
, and the probability of rolling a 7 is

1

6
.

Now suppose you fly a drone over the green, release a small rubber ball
from 20 feet above the center of the green, and measure the distance between
the precise center of the green and the spot the ball comes to rest. There
are infinitely many possible results, and they are not equally likely. The
probability of any one precise number, of those infinitely many possibilities,
would have to be zero. How can we talk about probability in this case?

First, we can talk about the probability of a result in a certain range, of
being within one foot of the center, of being between one and two feet, and
so forth. We can slice things more finely, by considering one inch instead of
one foot intervals. It sounds like we could take a limit, which almost works.
The problem is that as the length of the interval approaches zero, so does
the probability of being in that interval.

(Note: In probability theory an action with a random result, like rolling
a die and seeing what number comes up, is often called an experiment.)
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Here are some hypothetical graphs representing the probability of a cer-
tain event. For these pictures, it is an event whose result is between 0 and
1. For each picture, we have broken the interval [0, 1] into subintervals, and
graphed the function whose value above the ith subinterval is the probability
of being in that subinterval.

and in the limit

In these pictures, the height of the rectangle above the ith subinterval is
the probability of getting a result in that subinterval. The heights of the
rectangles must add up to 1. So as the number of rectangles approaches
infinity, the height of each individual rectangle approaches zero.

The solution is to instead make the area of the rectangle above the ith

subinterval equal the probability of getting a result in that subinterval. The
areas of the rectangles must add up to 1. As the number of rectangles
approaches infinity, the area covered remains equal to 1, but in the limit the
top edge is a smooth curve.

and in the limit

The probability of a result in a given interval is the area below the curve
on that interval.

Note: In order to have a probability density, the total area under the
curve must equal 1.
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Example: The probability density for the result of an experiment that
yields positive values is given by f(x) = e−x. What is the probability of
getting a value less than 1?

We want the probability of a number between 0 and 1. Therefore we
should integrate the probability density from 0 to 1. We get∫ 1

0

e−x dx = −e−x
∣∣∣x=1

x=0
= −e−1 − (−e0) = 1− 1

e
.
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Exercise: Near the surface of the earth, gravity acts on an object of mass
m kilograms with a force of magnitude mg newtons directed downward. A
leaky bucket is being lifted out of a well having a depth of 80 meters.

The bucket itself has mass 4 kilograms, and is initially (at the bottom of
the well) filled with 80 kilograms of water. The water leaks out at a constant
rate of .2 kilograms per second, while the bucket is lifted at a constant rate
of 2 meters per second.

How much work must be done to lift the bucket out of the well?

Hint: Figure out the mass of the bucket when it has been lifted x meters.
Then you will know how much force is acting on the bucket when it is x
meters above the bottom of the well.

Note: We are ignoring the weight of the rope attached to the bucket.
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Exercise: The expected value of a random experiment is the average
value of the results if you perform the experiment many, many times. If the
possible results of the experiment are n1, n2, . . . , nk, and the probability of
getting value ni is pi, then the expected value is computed as

E =
k∑

i=1

nipi.

For example, the possible results of rolling a die are 1, 2, 3, 4, 5, 6, and each

one occurs with probability
1

6
, so the expected value is

1

(
1

6

)
+ 2

(
1

6

)
+ 3

(
1

6

)
+ 4

(
1

6

)
+ 5

(
1

6

)
+ 6

(
1

6

)
= 3.5.

(Notice that in this case, the expected value is not a value you ever expect
from one roll of the die. It is what you expect as an average when you roll
the die many times.)

How would we compute the expected value of an experiment with a prob-
ability density? We will assume the domain of the density is an interval [a, b].

We will do the following: Divide the interval into many small intervals of
length ∆x. Choose x∗i in interval number i. Pretend that the only possible
values of the experiment are x∗1, x

∗
2, . . . , x

∗
n. Pretend the probability of getting

x∗i is the probability of getting any result in interval number i, which is the
area under the curve above interval i, which is approximately the area of a
rectangle above interval number i having height f(x∗i ).

On the next page is a picture of a probability density. Add to this pic-
ture to illustrate the division into small intervals, and approximation of the
probability of getting result x∗i .
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a b

Write down a sum that approximates the expected value of an experiment
with this probability density.

By taking an appropriate limit, find a definite integral that gives this
expected value. This is called the mean of the probability density.

Suppose an experiment has a probability density given by f(x) = cosx

for 0 ≤ x ≤ π

2
. Find the expected value for this experiment.
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Exercise: The force exerted by a spring stretched x units beyond its
natural length is kx, where k is a constant (called the spring constant) de-
pending on the composition of the spring. (This is Hooke’s Law, which holds
as long as x is not too large.)

For example, if a spring has spring constant 200 newtons per meter, and
its natural length is 5 meters, when it has been stretched to a length of 6
meters (1 meter beyond its natural length) it exerts a force of 200 newtons,
and so 200 newtons of force must be applied to stretch it any further. Once
it has been stretched to a length of 6.5 meters (1.5 meters beyond its natural
length) it exerts a force of 300 newtons.

If the spring constant associated with a particular spring is 300 (in units
of newtons per meter), how much work must be done to stretch the spring
from its natural length of 20 centimeters to a length of 25 centimeters?

Suggestion: Rewrite the problem using meters instead of centimeters.
1 centimeter = .01 meter.
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Challenge Problem: In a fantasy novel, a magician extends a very
long golden filament (of length `) from the earth’s surface straight into the
sky. One end of the filament is just touching the ground, and the other is a
distance ` above the earth’s surface, when the spell is disrupted by a passing
dragon and the gold drops back to the surface of the earth.

The magnitude of the force of earth’s gravity acting on a nearby object

is F =
Cm

r2
, where C is a constant (the product of the earth’s mass and the

universal gravitational constant), m is the mass of the object, and r is the
distance from the object to the center of the earth. The radius of the earth
is a. The linear mass density of the filament is a constant ρ (so a piece of
filament of length w has mass ρw).

Assume the filament is long enough so the force of gravity on the far end
is significantly different from the force on the near end. How much work is
done by the force of gravity on the falling filament?

Suggestion: Break the filament into pieces of length ∆x, and use the
method of the satellite problem to find the work done on each falling piece.
Then add them up and take a limit.
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