Math 8

Winter 2020
Section 1
January 10, 2020
Informal Limit Proof
Example: Show

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)=\infty
$$

Solution: Here the $n^{\text {th }}$ term of our sequence is $a_{n}=\left(\frac{n^{n}}{n!}\right)$. (Notice that this number is always positive.) The ratio of successive terms is

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{\left(\frac{(n+1)^{(n+1)}}{(n+1)!}\right)}{\left(\frac{n^{n}}{n!}\right)}=\frac{n!}{(n+1)!} \frac{(n+1)^{n+1}}{n^{n}}=\frac{(n+1)^{n}}{n^{n}}= \\
\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n} .
\end{gathered}
$$

That is, multiply the term a_{n} by the number $\left(1+\frac{1}{n}\right)^{n}$ to get the next term a_{n+1}.
You may remember that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \approx 2.7$. This means that for all large enough n, the number $\left(1+\frac{1}{n}\right)^{n}$ is greater than 2 , so $a_{n+1}>2 a_{n}$. If we start with a positive number and double it over and over, it becomes larger and larger, with limit infinity. Therefore,

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)=\infty
$$

Perhaps you don't remember that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
Example: Find $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

Solution:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}=e^{\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}
$$

We need to find $\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)$.

$$
\ln \left(\left(1+\frac{1}{n}\right)^{n}\right)=n \ln \left(1+\frac{1}{n}\right)=\frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}
$$

We use l'Hôpital's Rule:

$$
\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\left(1+\frac{1}{n}\right)}\left(\frac{-1}{n^{2}}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\left(1+\frac{1}{n}\right)}}{1}=1
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}=e^{\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}=e^{1}=e
$$

