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Informal Limit Proof

Example: Show

lim
n→∞
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)
=∞.

Solution: Here the nth term of our sequence is an =

(
nn

n!

)
. (Notice that this number

is always positive.) The ratio of successive terms is
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)
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=
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=

(
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=

(
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n

)n

.

That is, multiply the term an by the number

(
1 +

1

n

)n

to get the next term an+1.

You may remember that lim
n→∞

(
1 +

1

n

)n

= e ≈ 2.7. This means that for all large enough

n, the number
(
1 + 1

n

)n
is greater than 2, so an+1 > 2an. If we start with a positive number

and double it over and over, it becomes larger and larger, with limit infinity. Therefore,

lim
n→∞

(
nn

n!

)
=∞.

Perhaps you don’t remember that lim
n→∞

(
1 +

1

n

)n

= e.

Example: Find lim
n→∞

(
1 +

1

n

)n

.

Solution:

lim
n→∞

(
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n

)n

= lim
n→∞

eln((1+
1
n)

n
) = elimn→∞ ln((1+ 1

n)
n
)
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We need to find lim
n→∞

ln

((
1 +

1

n

)n)
.

ln
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= n ln
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n

.

We use l’Hôpital’s Rule:

lim
n→∞

ln
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)
1
n
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= 1.

Therefore

lim
n→∞
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= lim
n→∞

eln((1+
1
n)

n
) = elimn→∞ ln((1+ 1

n)
n
) = e1 = e.
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