
Math 8
Winter 2020

Taylor Polynomials and Taylor Series Day 1

You may recall the tangent line approximation from your study of derivatives. The
tangent line approximation to the function f(x) near the point x = a is a function T (x)
whose graph is the line tangent to the graph of f at the point (x, y) = (a, f(a)). Another
way to say this is that the function T has the same value and derivative as the function x
at the point x = a. The formula for the tangent line approximation is

T (x) = f(a) + f ′(a)(x− a).

You can check that T (a) = f(a) and T ′(a) = f ′(a).
Below is a sketch of the graph of the function f(x) = ex, in blue, and the graph of its

tangent line approximation near x = 0, in red. You can see the tangent line approximation
is fairly close to the function for x near 0, but less close when x is farther from 0.

We can think of the tangent line approximation as a polynomial of degree 1, chosen to
have the same value and derivative as the function at the point x = a. This suggests a way
to get a better approximation: Use a degree 2 polynomial that also has the same second
derivative, or a degree 3 polynomial that also has the same second and third derivatives.

The two pictures below show these second- and third-degree approximations to f(x) = ex

near x = 0.

Clearly we need not stop at degree 3. For any n, we can find a polynomial Tn(x) of
degree n that has the same value and first n derivatives as the function f(x) at the point a.
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This polynomial is called the nth Taylor polynomial for f(x) at a (or centered at a), and it
is defined by

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(a)

2 · 3
(x− a)3 + · · ·+ f (n)(a)

2 · 3 · 4 · · ·n
(x− a)n

=
n∑

k=0

f (k)(a)

k!
(x− a)k.

The expression k!, pronounced “k factorial,” is defined by k! = 1 ·2 ·3 ·4 · · · k, except that for
k = 0 we define 0! = 1. The expression f (k) denotes the kth derivative of f ; we say f (0) = f .

A Taylor polynomial centered at 0 is also called a Maclaurin polynomial.

Example: Compute some Taylor polynomials for the function f(x) = sin(x) centered
at 0.

First we need to know some derivatives of our function at 0:

f(x) = sin(x) f(0) = 0

f ′(x) = cos(x) f ′(0) = 1

f ′′(x) = − sin(x) f ′′(0) = 0

f (3)(x) = − cos(x) f (3)(0) = −1

f (4)(x) = sin(x) f (4)(0) = 0

...

T0(x) = f(0) = 0

T1(x) = f(0) + f ′(0)(x− 0) = x

T2(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 = x

T3(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 +

f (3)(0)

3!
(x− 0)3 = x− x3

6

We can see the pattern in the derivatives of f at 0 (they are 0, 1, 0,−1, 0, 1, 0,−1 . . . ), so we
can write down any Taylor polynomial we want:

T10(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
.

We can even write down a general formula:

Tn(x) =
n∑

k=0

ck
k!
xk where ck =

{
0 if k is even

(−1)
n−1
2 if k is odd.
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If we graph Tn(x) for larger and larger values of n, the graphs of Tn(x) look more and
more like the graph of f(x). (You can find an online program that will draw these graphs
at <https://www.geogebra.org/m/frkWCH4U>. Or search for “Taylor Polynomials Geoge-
bra.”)

However, if we do the same thing with the function f(x) = ln(x) centered at 1, the graphs
of Tn(x) look more and more like the graph of f(x) on the interval 0 < x < 2, but not for
x > 2.

If we actually want to use Tn(x) as an approximation for f(x), we would like to know
whether it is a good approximation. We’d also like to know just how good.

First, some notation. If Tn(x) is the nth Taylor polynomial for f(x) at a, we let Rn(x)
denote the difference between the actual value f(x) and the approximate value Tn(x), called
the nth remainder:

Rn(x) = f(x)− Tn(x).

The error in the approximation is the absolute value of the remainder, |Rn(x)|. The approx-
imation is good if the error is small. We hope that we can make the approximation as good
as we want just by making n large enough. That is, we hope that

lim
n→∞

Rn(x) = 0,

or
lim
n→∞

Tn(x) = f(x).

Example:

f(x) = x−2 f(1) = 1

f ′(x) = −2x−3 f ′(1) = −2

f ′′(x) = 3 · 2x−4 f ′′(1) = 2 · 3
f (3)(x) = −4 · 3 · 2x−5 f (4)(0) = −2 · 3 · 4

...

f (k)(x) = (−1)k(k + 1)!x−(k+2) f (k)(1) = (−1)k(k + 1)!

Tn(x) =
n∑

k=0

(−1)k(k + 1)!

k!
(x− 1)k =

n∑
k=0

(−1)k(k + 1)(x− 1)k

Tn(2) =
n∑

k=0

(−1)k(k + 1)(2− 1)k = 1− 2 + 3− 4 + 5− · · · ± (n + 1).

Clearly in this case
lim
n→∞

Tn(2) 6= f(2).

Over the next few classes we will explore this question. In the meantime, here is another
example:
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Example: Let f(x) =
1

1− x
. We can1 compute the nth Maclaurin polynomial of f as

Tn(x) = 1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
= f(x)− xn+1

1− x
,

so the error in the approximation is
xn+1

1− x
, which approaches 0 as n → ∞ just in case

lim
n→∞

xn+1 = 0.

For x = 2, we have lim
n→∞

2n+1 = +∞ 6= 0, so the Maclaurin polynomials Tn(2) do not

approach f(2) as n→∞.

On the other hand, for x =
1

2
, we have lim

n→∞

(
1

2

)n+1

= lim
n→∞

(
1

2n+1

)
= 0, so the

Maclaurin polynomials Tn

(
1

2

)
do approach f

(
1

2

)
as n→∞.

You may be able to see that the Maclaurin polynomials Tn(x) approach f(x) as n→∞
just in case |x| < 1.

1You should verify this by finding the Maclaurin polynomials for f , and by checking that the formula

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
is correct.

4


