
Figure 1: Finding a tangent plane to a graph

Math 8
Winter 2020

Tangent Approximations and Differentiability

We have seen how to find partial derivatives of functions from R2 to R,
and seen how to use them to find tangent planes to graphs.

Figure 1 shows the graph of the function f(x, y) = x2 + y2. The two red
curves are the intersections of the graph with planes x = x0 and y = y0, and
the yellow lines are tangent lines to the red curves, also lying in those planes.
The slopes of the yellow lines (vertical rise over horizontal run, where the z-
axis is vertical) are the partial derivatives of f at the point (x, y) = (x0, y0).
The plane containing those yellow lines should be tangent to the graph of f .

The phrase should be is important here. So far, we have pretty much
been assuming this works. There is a very good argument that if there is any
plane tangent to this graph at this point, it must be the plane containing
these yellow lines, because those lines are tangent to the graph. But how do
we know there is any tangent plane at all?
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Figure 2: Graph of f(x, y) =
2xy√
x2 + y2

.

If (x, y) = (r sin θ, r cos θ), then f(x, y) = r sin(2θ).

It turns out that a function can have partial derivatives without its graph
having a tangent plane.

Here is an example. Figure 2 shows two different pictures of a portion of
the graph of the function

f(x, y) =
2xy√
x2 + y2

.

The x- and y-axes are drawn in red, and the intersection of the graph with
the vertical plane y = x is drawn in yellow.

The x- and y-axes lie on the graph of f . Therefore, if we were using the
“plane containing two tangent lines” definition, we would conclude that the
horizontal plane z = 0 is tangent to the graph of f at the origin. However, as
is most easily seen in the second picture, when we slice in the plane x = y, the
graph of f has a sharp point at the origin, like the absolute value function.
Therefore, it cannot have a tangent plane.
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Definition: A function f : R2 → R is differentiable at (x, y) = (x0, y0) if
the graph of f has a non-vertical tangent plane at the point (x0, y0, f(x0, y0)).

Fact: If f is differentiable at (x0, y0), then both partial derivatives fx(x0, y0)
and fy(x0, y0) are defined.

This gives us a way to check that a function is not differentiable; just
show one of the partial derivatives is undefined. There is also a way that
sometimes works to check that a function is differentiable.

Fact: If the partial derivatives of f are defined near (x0, y0) (this means
on some disc, even a very tiny one, with center (x0, y0)), and continuous at
(x0, y0), then f is differentiable at (x0, y0).

For example, the partial derivatives of any polynomial are also polynomi-
als, and polynomials are defined and continuous everywhere. It follows that
polynomials are differentiable everywhere.

Suppose the partial derivatives of f are defined but not continuous at
(x0, y0). Then f may or may not be differentiable at (x0, y0). How would
we check? Well, we said earlier that if the graph f has any tangent plane, it
must be the tangent plane defined using the partial derivatives of f .

Fact: If the partial derivatives of f are defined at (x0, y0), then f is
differentiable at (x0, y0) just in case the plane with equation

z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0)

is tangent to the graph of f at the point (x0, y0, f(x0, y0)).

So, to check whether f is differentiable at (x0, y0), we should check
whether this plane is actually tangent to the graph of f at this point. Before
we explore what this means, one more definition:

Definition: If f is differentiable (and only then), the vector of its par-
tial derivatives at (a, b) is called its total derivative, or simply derivative, at
(x0, y0):

f ′(x0, y0) = 〈fx(x0, y0), fy(x0, y0)〉.

This lets us rewrite the definition of our candidate tangent plane in a
familiar form:

z = f(x0, y0) + f ′(x0, y0) · 〈x− x0, y − y0〉.
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So what does it mean for the plane

z = ax+ by + d

to be tangent to the surface
z = f(x, y)

at some point (x0, y0, z0) that is on both the plane and the surface?
We answer this question for functions from R to R by defining the slope

of the graph to be the limit of slopes of secant lines, and then saying a line
is tangent to the graph if they have the same slope. More precisely, to find
the slope of the graph of f at (x0, f(x0)), we look at slopes of secant lines
with one endpoint (x0, f(x0)) and the other endpoint (x, f(x)), and take the
limit as x→ x0:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

We will do something like this, but it’s not quite this simple. We have
already seen that the slopes of a surface in different directions are likely
to be different. We can define the slope of a secant line with endpoints
(x0, y0, f(x0, y0)) and (x, y, f(x, y)) as (vertical) rise over (horizontal) run,
where the run is the distance in the xy-plane between the points (x0, y0) and
(x, y).

slope =
f(x, y)− f(x0, y0)√
(x− x0)2 + (y − y0)2

=
f(x, y)− f(x0, y0)

|(x, y)− (x0, y0)|
.

But then the limit

lim
(x,y)→(x0,y0)

slope = lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)

|(x, y)− (x0, y0)|
,

probably doesn’t exist, even if the graph of f is a plane.

Try it yourself, with the example f(x, y) = x and (x0, y0) = (0, 0). You
can check that the limit

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)

|(x, y)− (x0, y0)|
= lim

(x,y)→(0,0)

f(x, y)− f(0, 0)

|(x, y)− (0, 0)|
= lim

(x,y)→(0,0)

x√
x2 + y2

does not exist.
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However, we still want to use this idea. If a plane is tangent to the graph
of f at some point, then in the limit, secant lines of the graph of f and line
segments in the plane should have the same slope. We will say this by saying
that, in the limit, the difference of the slopes is zero.

(x0, y0)

z = z0 = f(x0, y0) = P(x0, y0)

z = P(x, y)

z = f(x, y)

(x, y)

graph of f

graph of P

Suppose that the point (x0, y0, z0) lies on both the graph of f and the
plane

z = P(x, y) = ax+ by + d.

This means we must have

f(x0, y0) = P(x0, y0) = z0.

Taking a point (x, y) close to (x0, y0) in the domain of f gives us a (red)
secant line of the graph of f , with endpoints (x0, y0, f(x0, y0)), (x, y, f(x, y))
and slope

f((x, y)− f(x0, y0)

|(x, y)− (x0, y0)|
=

f((x, y)− z0
|(x, y)− (x0, y0)|

,

and it also gives us a (green) line segment in the plane, with endpoints
(x0, y0,P(x0, y0), (x, y,P(x, y)) and slope

P(x, y)− P(x0, y0)

|(x, y)− (x0, y0)|
=

P(x, y)− z0
|(x, y)− (x0, y0)|

.

The difference of these slopes is

f(x, y)− z0
|(x, y)− (x0, y0)|

− P(x, y)− z0
|(x, y)− (x0, y0)|

=
f(x, y)− P((x, y)

|(x, y)− (x0, y0)|
.
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We say that the plane is tangent to the graph of f at (x0, y0, z0) if this
difference of slopes approaches 0 as (x, y) approaches (x0, y0):

lim
(x,y)→(x0,y0)

f(x, y)− P(x, y)

|(x, y)− (x0, y0)|
= 0.

Definition: If f : R2 → R and P : R2 → R, then the graphs of f and P are

tangent at (x0, y0, z0) if and only if f(x0, y0) = P(x0, y0) = z0 and

lim
(x,y)→(x0,y0)

f(x, y)− P(x, y)

|(x, y)− (x0, y0)|
= 0.

Definition: The function f : R2 → R is differentiable at (x0, y0) if its graph
has a non-vertical tangent plane at the point (x0, y0, f(x0, y0)).

We use these same definitions for functions f : Rn → R.
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Example: Show that the graphs of the functions f(x, y) = x2 − y2 and
P(x, y) = 2x− 4y + 3 are tangent at the point (1, 2,−3).

What does this say about the derivative of f?

First we check that (1, 2,−3) is on both graphs:

f(1, 2) = (1)2 − (2)2 = 1− 4 = −3

P(1, 2) = 2(1)− 4(2) + 3 = 2− 8 + 3 = −3.

Now we use the definition of tangent. Here our point is (x0, y0) = (1, 2), so
we need to check that

lim
(x,y)→(x0,y0)

f(x, y)− P(x, y)

|(x, y)− (x0, y0)|
= lim

(x,y)→(1,2)

f(x, y)− P(x, y)

|(x, y)− (1, 2)|
= 0.

Evaluating the expression inside the limit:

f(x, y)− P(x, y)

|(x, y)− (1, 2)|
=

(x2 − y2)− (2x− 4y + 3)√
(x− 1)2 + (y − 2)2

=
x2 − 2x+ 1− y2 + 4y − 4√

(x− 1)2 + (y − 2)2

=
(x− 1)2 − (y − 2)2√
(x− 1)2 + (y − 2)2

=
(x− 1)2√

(x− 1)2 + (y − 2)2
− (y − 2)2√

(x− 1)2 + (y − 2)2

Looking at the first piece of this:

(x− 1)2√
(x− 1)2 + (y − 2)2

=

√
(x− 1)4√

(x− 1)2 + (y − 2)2
=

√
(x− 1)4

(x− 1)2 + (y − 2)2
=

√
(x− 1)2

(
(x− 1)2

(x− 1)2 + (y − 2)2

)
≤
√

(x− 1)2 = |x− 1|.

(The ≤ step is because the numerator of

(
(x− 1)2

(x− 1)2 + (y − 2)2

)
is less than

or equal to the denominator, so the fraction is at most 1.)

In the same way, we have

(y − 2)2√
(x− 1)2 + (y − 2)2

≤ |y − 2|,

7



and so∣∣∣∣f(x, y)− P(x, y)

|(x, y)− (1, 2)|

∣∣∣∣ =

∣∣∣∣∣ (x− 1)2√
(x− 1)2 + (y − 2)2

− (y − 2)2√
(x− 1)2 + (y − 2)2

∣∣∣∣∣
≤

∣∣∣∣∣ (x− 1)2√
(x− 1)2 + (y − 2)2

∣∣∣∣∣+

∣∣∣∣∣ (y − 2)2√
(x− 1)2 + (y − 2)2

∣∣∣∣∣ ≤ |x− 1|+ |y − 2|.

Now
lim

(x,y)→(1,2)
|x− 1| = 0 and lim

(x,y)→(1,2)
|y − 2| = 0,

and therefore

lim
(x,y)→(1,2)

∣∣∣∣f(x, y)− P(x, y)

|(x, y)− (1, 2)|

∣∣∣∣ = 0,

and so,

lim
(x,y)→(1,2)

f(x, y)− P(x, y)

|(x, y)− (1, 2)|
= 0.

This is what we needed to show.

What does this say about the derivative of f?

Since the graph of P is a plane tangent to the graph of f at the point
where (x, y) = (1, 2), this says that f is differentiable at (1, 2).

Furthermore, we can write

P(x, y) = 〈2,−4〉 · 〈x, y〉+ 3,

and therefore
f ′(1, 2) = 〈2,−4〉 .
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Pretty much all our derivatives and tangent approximations can be put
in the same basket:

For f : R→ R, the tangent approximation at x = x0 is given by
T (x) = f ′(x0)(x− x0) + f(x0)

For ~r : R→ Rn, the tangent approximation at t = t0 is given by
~T (t) = (t− t0)~r ′(t0) + ~r(t0).

For f : Rn → R the tangent approximation at (x, y, z . . . ) = (x0, y0, z0 . . . )
is given by
T (x, y, z, . . . ) = f ′(x0, y0, z0 . . . )·〈x− x0, y − y0, z − z0, . . . 〉+f(x0, y0, z0 . . . ).
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Note: Our definition of differentiable is different from the textbook’s, and
that is because our definition of tangent is different. (The two definitions are
equivalent, they are just phrased differently.)

Suppose we define E(x, y) = f(x, y) − P(x, y) to be the error in using
P(x, y) as an approximation to f(x, y) near (x0, y0). Then our definition of
tangent (assuming that f(x0, y0) = P(x0, y0)) is that

lim
(x,y)→(x0,y0)

E(x, y)

|(x, y)− (x0, y0)|
= 0.

The textbook’s definition says we can write the error as the sum of two
parts

E(x, y) = ε1(x, y)(x− x0) + ε2(x, y)(y − y0)
in such a way that

lim
(x,y)→(x0,y0)

ε1(x, y) = 0 and lim
(x,y)→(x0,y0)

ε2(x, y) = 0.

As we said, these two definitions are equivalent, and you may use either
one.

In the example on page 7, we had (x0, y0) = (1, 2), and our error function
E(x, y) = f(x, y)−P(x, y) was computed to be (x− 1)2 − (y − 2)2. We can
write this as

E(x, y) = (x− 1)︸ ︷︷ ︸
ε1(x,y)

(x− 1)︸ ︷︷ ︸
(x−x0)

+ (−(y − 2))︸ ︷︷ ︸
ε2(x,y)

(y − 2)︸ ︷︷ ︸
(y−y0)

,

and check that

lim
(x,y)→(1,2)

(x− 1) = 0 and lim
(x,y)→(1,2)

(−(y − 2)) = 0.

This worked out nicely for this example. However, suppose we want to
show that the graph of P(x, y) = x + y is tangent to the graph of f(x, y) =
sin(x+ y) at (0, 0). We can find

E(x, y) = f(x, y)− P(x, y) = sin(x+ y)− x− y.
It’s hard to see how we should rewrite this in the form ε1(x, y)(x − 0) +
ε2(x, y)(y − 0). It’s also hard to see how to show

lim
(x,y)→(0,0)

sin(x+ y)− x− y
|(x, y)− (0, 0)|

= 0,

but we do know what we are trying to do.
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