
Math 8
Winter 2020

Taylor Polynomials and Taylor Series Day 4

Error Estimates

We know that the Maclaurin series for ex is given as the limit of the Taylor polynomials,

lim
n→∞

Tn(x) = lim
n→∞

∞∑
k=0

xk

k!
=
∞∑
k=0

xk

k!
,

and we have also learned that this series actually converges to ex for every value of x,

ex = lim
n→∞

∞∑
k=0

xk

k!
=
∞∑
k=0

xk

k!
.

In particular, substituting x = 1, we get

e = e1 =
∞∑
k=0

1

k!
.

We can estimate e using Taylor polynomials, or partial sums of the Taylor series,

e ≈ Tn(1) =
n∑

k=0

1

k!
.

The error in this estimate is the difference between the estimate and the actual value,

error = |e− Tn(1)| =

∣∣∣∣∣e−
n∑

k=0

1

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

1

k!
−

n∑
k=0

1

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

1

k!

∣∣∣∣∣ .
In homework, you found the error in problems like this by calculating |e− Tn(1)|. However,
this works only if you already know the actual value of e.

Today, we will learn a couple of ways of bounding the error∣∣∣∣∣
∞∑
k=0

ak −
n∑

k=0

ak

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ak

∣∣∣∣∣
in using a partial sum Sn =

n∑
k=0

ak to approximate the sum
∞∑
k=0

ak. Bounding the error means

finding a number b such that the error is guaranteed to be smaller than b.
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Alternating Series

Suppose the series
∞∑
k=0

ak satisfies all three conditions of the alternating series test:

(1.) The terms an alternate between positive and negative.
(2.) The terms an are decreasing in absolute value, that is, |an+1| ≤ |an| for all n.
(3.) The terms an are approaching zero, lim

n→∞
an = 0.

The picture accompanying the proof of the alternating series test at the beginning of
Section 11.5 of the textbook shows that the sum of the series must be between 0 and the
first term a0:

Proposition: If the series
∞∑
k=0

ak satisfies all three conditions of the alternating series

test:
(1.) The terms an alternate between positive and negative;
(2.) The terms an are decreasing in absolute value, that is, |an+1| ≤ |an| for all n;
(3.) The terms an are approaching zero, lim

n→∞
an = 0;

then ∣∣∣∣∣
∞∑
k=0

ak

∣∣∣∣∣ ≤ |a0| .
We can apply this to any tail end of the series as well:∣∣∣∣∣

∞∑
k=n+1

ak

∣∣∣∣∣ ≤ |an+1| .

We may call this the error bound from the alternating series test.

Example: Find n so that the approximation

e−1 ≈
n∑

k=0

(−1)k

k!

is correct to within 2 decimal places (an error of at most .005).

We know from the fact that the Taylor series for ex converges to ex that

e−1 =
∞∑
k=0

(−1)k

k!

so the error we are looking for is∣∣∣∣∣e−1 −
n∑

k=0

(−1)k

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(−1)k

k!
−

n∑
k=0

(−1)k

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

(−1)k

k!

∣∣∣∣∣ .
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Because the sum
∞∑
k=0

(−1)k

k!
satisfies the conditions of the alternating series test, we know

error =

∣∣∣∣∣
∞∑

k=n+1

(−1)k

k!

∣∣∣∣∣ ≤
∣∣∣∣(−1)n+1

(n + 1)!

∣∣∣∣ =
1

(n + 1)!
,

so we need to find n such that

1

(n + 1)!
≤ .005 =

5

1000
=

1

200
,

or
(n + 1)! ≥ 200.

A table of factorials (or a little computation) will tell us that 5! = 120, and 6! = 720, so
n + 1 = 6, or n = 5, will do.

e−1 ≈ 1− 1 +
1

2
− 1

6
+

1

24
− 1

120
=

11

30

and this approximation is correct to two decimal places.

Example: Find n so that the approximation

e−10 ≈
n∑

k=0

(−10)k

k!

is correct to within 2 decimal places (an error of at most .005).

As before, we want to find n such that

error =

∣∣∣∣∣
∞∑

k=n+1

(−10)k

k!

∣∣∣∣∣ ≤ 1

200
,

but now our series does not satisfy condition (2) of the alternating series test. The first few
terms of the series are 1,−10, 50, which are not decreasing in absolute value. The terms do
begin to decrease in absolute value eventually.

In general, for this series we have an+1 = an

(
−10

(n + 1)!

)
. If n ≥ 10 we have

∣∣∣∣ 10

(n + 1)!

∣∣∣∣ < 1,

so for n ≥ 10 we can use the error bound from the alternating series test. This means that

we must find n ≥ 10 such that

∣∣∣∣(−10)(n+1)

(n + 1)!

∣∣∣∣ ≤ .005. (It turns out that n = 29 will do.)
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The Comparision Test

If the terms of our series are not alternating, we need another method. One such method
comes from the comparison test. Remember, the comparison test says that if ak ≤ bk for

every k, and
∞∑
k=0

ak = A and
∞∑
k=0

bk = B, then A ≤ B. Here is an example:

Example: Find n such that the approximation

e ≈
n∑

k=0

1

k!

is correct to within two decimal places.

As in our earlier problems, we want to find n such that we have

error =
∞∑

k=n+1

1

k!
≤ .005 =

1

200
.

We will estimate the error by comparing the series to a series whose sum we know, a geometric
series.

For our series, we have ak =
1

k!
so that ak+1 = ak

(
1

k + 1

)
. If we are looking at the tail

end that gives our error,
∞∑

k=n+1

1

k!
,

we have k + 1 > n + 1 for all k, so ak+1 = ak

(
1

k + 1

)
< ak

(
1

n + 1

)
. This tells us that,

term-by-term, our tail end series is less than or equal to the series

an+1, an+1

(
1

n + 1

)
, an+1

(
1

n + 1

)2

, an+1

(
1

n + 1

)3

, . . .

This is a geometric series with first term an+1 =
1

(n + 1)!
and ratio

1

(n + 1)
, so its sum is

1
(n+1)!

1− 1
(n+1)

=
1

n!(n)
. In this case we want to make this less than

1

200
, or n!(n) > 200. From

a table of factorials we can find 4!(4) = 24(4) = 96, and 5!(5) = 120(5) = 600, so n = 5 will
do.

e ≈ 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
= 2

43

60

and this approximation is correct to two decimal places.
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