Math 8
 Winter 2020
 Taylor Polynomials and Taylor Series Day 5

Here is one more convergence test.
Proposition: (the ratio test for nonnegative series) If $a_{n} \geq 0$ for all n, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L
$$

then

$$
\sum_{n=0}^{\infty} a_{n} \text { is } \begin{cases}\text { convergent } & \text { if } L<1 \\ \text { divergent } & \text { if } L>1 \\ \text { we cannot tell from this test } & \text { if } L=1\end{cases}
$$

We can rephrase this using our earlier proposition that absolutely convergent sequences are always convergent.

Proposition: (the ratio test) For any series, if

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

then

$$
\sum_{n=0}^{\infty} a_{n} \text { is } \begin{cases}\text { absolutely convergent } & \text { if } L<1 \\ \text { divergent } & \text { if } L>1 \\ \text { we cannot tell from this test } & \text { if } L=1\end{cases}
$$

There is a proof of the ratio test in the last section. Intuitively, if we have a nonnegative series with $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{2}$, then a tail end of the series behaves very much like a geometric series with ratio $\frac{1}{2}$, which converges. On the other hand, if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=2$, then eventually the terms of the series are getting larger and larger, and the sum of larger and larger numbers must approach $+\infty$.

The ratio test will be useful for Taylor series.

Radius of Convergence

Taylor series centered at $x=a$

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

are examples of power series centered at $x=a$

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k} \quad\left(\text { each } c_{k} \text { is a constant }\right)
$$

We can use a power series to define a function,

$$
g(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k},
$$

whose domain is the set of x for which the power series converges.
We hope that the Taylor series for $f(x)$ not only converges, but converges to $f(x)$.

To find the set of x for which a given power series converges, a good place to start is the ratio test. For example, consider

$$
\sum_{k=0}^{\infty} k(x-1)^{k}
$$

To see whether this series converges for a particular value of x, we use the ratio test:

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|= & \lim _{k \rightarrow \infty}\left|\frac{(k+1)(x-1)^{k+1}}{k(x-1)^{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{k+1}{k}(x-1)\right|= \\
& \left(\lim _{k \rightarrow \infty}\left|\frac{k+1}{k}\right|\right)|x-1|=|x-1|
\end{aligned}
$$

By the ratio test, this power series converges absolutely if $|x-1|<1$ and diverges if $|x-1|>1$. The ratio test doesn't tell us what happens for $|x-1|=1$. Therefore the ratio test tells us that the domain of the function defined by this power series contains $(0,2)$, and may or may not contain the points 0 and 2 .

To see whether it contains the endpoints of the interval, we can plug them in and see what happens. For $x=2$, we have

$$
\sum_{k=0}^{\infty} k(x-1)^{k}=\sum_{k=0}^{\infty} k(1)^{k}=0+1+2+3+\cdots
$$

and for $x=0$ we have

$$
\sum_{k=0}^{\infty} k(x-1)^{k}=\sum_{k=0}^{\infty} k(-1)^{k}=0-1+2-3+\cdots
$$

both of which diverge. Therefore the domain of this function is $(0,2)$.
In general, we can apply the ratio test to the power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ and get
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)^{k+1}}{c_{k}(x-a)^{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}(x-a)\right|=\left(\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|\right)|x-a|$.
If $\left(\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|\right)=Q$, then we get

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=Q|x-a|,
$$

and the power series converges absolutely when

$$
Q|x-a|<1, \text { or }|x-a|<\frac{1}{Q},
$$

and diverges if

$$
Q|x-a|>1, \text { or }|x-a|>\frac{1}{Q}
$$

We call $R=\frac{1}{Q}$ the radius of convergence. (If $Q=0$ the radius of convergence is $+\infty$, and if $Q=+\infty$ the radius of convergence is 0 .) The power series converges absolutely for $|x-a|<R$ and diverges for $|x-a|>R$. For $|x-a|=R$, it may converge or diverge, depending on the power series.

It turns out that power series always behave this way, even if $\left(\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|\right)$ does not converge.

Proposition 0.1. A power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ always has a radius of convergence R with $0 \leq R \leq \infty$. The power series converges absolutely for $|x-a|<R$ and diverges for $|x-a|>R$.

If $R=0$ the power series converges only for $x=a$ and if $R=\infty$ it converges for all x. For $0<R<\infty$, the set of x for which the power series converges is one of the intervals

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R], \text { or }[a-R, a+R]
$$

This is called the interval of convergence of the series.

New Taylor Series from Old

If we compute the Taylor series for $f(x)$ centered at a directly from the formula for Taylor series, we can use the ratio test to find the radius of convergence. For x within that radius of convergence of a, we hope that the Taylor series for $f(x)$ not only converges, but converges to $f(x)$. The ratio test cannot tell us that.

However, there is another way to arrive at Taylor series, and know they converge to the function.

Theorem: Suppose the function $f(x)$ is defined by a power series centered at a with radius of convergence R,

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k} .
$$

Then the term-by-term derivative of the power series has the same radius of convergence, and gives the derivative of $f(x)$:

$$
f^{\prime}(x)=\sum_{k=0}^{\infty} k c_{k}(x-a)^{k-1} .
$$

The same is true for the term-by-term indefinite integral,

$$
\int f(x) d x=C+\sum_{k=0}^{\infty} c_{k} \frac{(x-a)^{k+1}}{k+1}
$$

and definite integral, as long as b and d are in $(a-R, a+R)$,

$$
\int_{b}^{d} f(x) d x=\left.\left[\sum_{k=0}^{\infty} c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right|_{x=b} ^{x=d}=\sum_{k=0}^{\infty}\left(\left.\left[c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right|_{x=b} ^{x=d}\right)
$$

In particular, for $a-R<x<a+R$ (inside the radius of convergence)

$$
\int_{a}^{x} f(u) d u=\left.\left[\sum_{k=0}^{\infty} c_{k} \frac{(u-a)^{k+1}}{k+1}\right]\right|_{u=a} ^{u=x}=\sum_{k=0}^{\infty}\left(\left[c_{k} \frac{(x-a)^{k+1}}{k+1}\right]\right)
$$

Example: Use this theorem to find a power series expansion (Taylor series) for $\ln (x+1)$ centered at $a=0$.

For $|x|<1$ we have:

$$
\begin{gathered}
\frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{k=0}^{\infty}(-x)^{k}=\sum_{k=0}^{\infty}(-1)^{k} x^{k} \\
\int \frac{1}{1+x} d x=C+\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1}=C+\sum_{i=1}^{\infty}(-1)^{i-1} \frac{x^{i}}{i}
\end{gathered}
$$

Evaluating the integral,

$$
\ln (x+1)=C+\sum_{i=1}^{\infty}(-1)^{i+1} \frac{x^{i}}{i}=C+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Plugging in $x=0$,

$$
\begin{gathered}
\ln (1)=C \quad \text { therefore } \quad C=0 \\
\ln (x+1)=\sum_{i=1}^{\infty}(-1)^{i+1} \frac{x^{i}}{i}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{gathered}
$$

Our theorem says this holds for $|x|<1$, and the series diverges for $|x|>1$. The theorem doesn't tell us what happens if $|x|=1$. If we care, we have to check that separately.

For this example, for $x=1$ the series does converge to $\ln (2)$. For $x=-1$, the series is $-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\cdots$. This is -1 times the harmonic series, and the harmonic series diverges to ∞.

Example: It is possible to show that for all x (in other words, with radius of convergence $R=\infty$),

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x^{(2 k+1}}{(2 k+1)!}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

By this theorem we can take derivatives of each side, differentiating the power series term-by-term, to get
$\cos (x)=\sum_{k=0}^{\infty}(2 k+1)(-1)^{k}\left(\frac{x^{2 k}}{(2 k+1)!}\right)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x^{2 k}}{(2 k)!}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$,
with the same radius of convergence $R=\infty$. This shows the Maclaurin series for $\cos (x)$ also converges to $\cos (x)$ for every x.

Example: We have seen that for $|x|<1$ we have

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

Substituting $x=-u^{2}$, we get

$$
\frac{1}{1+u^{2}}=\sum_{k=0}^{\infty}\left(-u^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} u^{2 k} .
$$

This holds for $\left|-u^{2}\right|<1$, which is to say, $|u|<1$. Applying our theorem, we get

$$
\begin{aligned}
\int_{0}^{x} \frac{1}{1+u^{2}} d u & =\int_{0}^{x}\left(\sum_{k=0}^{\infty}(-1)^{k} u^{2 k}\right) d x=\sum_{k=0}^{\infty}\left(\int_{0}^{x}(-1)^{k} u^{2 k} d u\right) \\
\arctan (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

By the theorem, this has the same radius of convergence, namely 1 , so this is true for $|x|<1$.

The theorem doesn't tell us whether this is true for $|x|=1$, that is, for $x=1$ or for $x=-1$. It turns out that it is true in both cases, so the interval of convergence for this series is $[-1,1]$, and it converges to $\arctan (x)$ for every x in that interval.

Proof That the Ratio Test Works: Suppose that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

First, suppose that $L>1$, and choose $\varepsilon>0$ small enough that $L-\varepsilon>1$. By the definition of limit, there is some N such that whenever $n>N$ we have $\left|\frac{a_{n+1}}{a_{n}}\right|-L<\varepsilon$. This means that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|>L-\varepsilon>1,
$$

and that means that $\left|a_{n+1}\right|>\left|a_{n}\right|$. Since the individual terms of the series are getting larger in absolute value, they are not approaching zero, and so the series must diverge.

Now, suppose that $L<1$, and choose $\varepsilon>0$ small enough that $L+\varepsilon<1$. By the definition of limit, there is some N such that whenever $n>N$ we have $\left|\frac{a_{n+1}}{a_{n}}\right|-L<\varepsilon$. This means that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<L+\varepsilon
$$

Consider the series,

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right| .
$$

For this series, we have

$$
\begin{gathered}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<L+\varepsilon, \\
\left|a_{n+1}\right| \leq(L+\varepsilon)\left|a_{n}\right|
\end{gathered}
$$

which means the terms of the series are less than or equal to the terms of a geometric series with first term a_{N+1} and ratio $L+\varepsilon$. Since $L+\varepsilon<1$, this geometric series converges, and therefore the smaller series $\sum_{n=N+1}^{\infty}\left|a_{n+1}\right|$ also converges.

Since a tail end of the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, the series itself converges. This means the original series $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent, and therefore it is convergent.

