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Winter 2020

Taylor Polynomials and Taylor Series Day 5

Here is one more convergence test.

Proposition: (the ratio test for nonnegative series) If an ≥ 0 for all n,
and

lim
n→∞

an+1

an
= L,

then

∞∑
n=0

an is


convergent if L < 1;

divergent if L > 1;

we cannot tell from this test if L = 1.

We can rephrase this using our earlier proposition that absolutely con-
vergent sequences are always convergent.

Proposition: (the ratio test) For any series, if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,

then

∞∑
n=0

an is


absolutely convergent if L < 1;

divergent if L > 1;

we cannot tell from this test if L = 1.

There is a proof of the ratio test in the last section. Intuitively, if we

have a nonnegative series with lim
n→∞

an+1

an
=

1

2
, then a tail end of the series

behaves very much like a geometric series with ratio
1

2
, which converges. On

the other hand, if lim
n→∞

an+1

an
= 2, then eventually the terms of the series are

getting larger and larger, and the sum of larger and larger numbers must
approach +∞.

The ratio test will be useful for Taylor series.
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Radius of Convergence

Taylor series centered at x = a

∞∑
k=0

f (k)(a)

k!
(x− a)k

are examples of power series centered at x = a

∞∑
k=0

ck(x− a)k (each ck is a constant).

We can use a power series to define a function,

g(x) =
∞∑
k=0

ck(x− a)k,

whose domain is the set of x for which the power series converges.
We hope that the Taylor series for f(x) not only converges, but converges

to f(x).
To find the set of x for which a given power series converges, a good place

to start is the ratio test. For example, consider

∞∑
k=0

k(x− 1)k.

To see whether this series converges for a particular value of x, we use the
ratio test:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(k + 1)(x− 1)k+1

k(x− 1)k

∣∣∣∣ = lim
k→∞

∣∣∣∣k + 1

k
(x− 1)

∣∣∣∣ =

(
lim
k→∞

∣∣∣∣k + 1

k

∣∣∣∣) |x− 1| = |x− 1|.

By the ratio test, this power series converges absolutely if |x − 1| < 1 and
diverges if |x − 1| > 1. The ratio test doesn’t tell us what happens for
|x− 1| = 1. Therefore the ratio test tells us that the domain of the function
defined by this power series contains (0, 2), and may or may not contain the
points 0 and 2.
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To see whether it contains the endpoints of the interval, we can plug them
in and see what happens. For x = 2, we have

∞∑
k=0

k(x− 1)k =
∞∑
k=0

k(1)k = 0 + 1 + 2 + 3 + · · ·

and for x = 0 we have

∞∑
k=0

k(x− 1)k =
∞∑
k=0

k(−1)k = 0− 1 + 2− 3 + · · ·

both of which diverge. Therefore the domain of this function is (0, 2).

In general, we can apply the ratio test to the power series
∞∑
k=0

ck(x− a)k

and get

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1(x− a)k+1

ck(x− a)k

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1

ck
(x− a)

∣∣∣∣ =

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣) |x−a|.
If

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣) = Q, then we get

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = Q|x− a|,

and the power series converges absolutely when

Q|x− a| < 1, or |x− a| < 1

Q
,

and diverges if

Q|x− a| > 1, or |x− a| > 1

Q
.

We call R =
1

Q
the radius of convergence. (If Q = 0 the radius of convergence

is +∞, and if Q = +∞ the radius of convergence is 0.) The power series
converges absolutely for |x − a| < R and diverges for |x − a| > R. For
|x− a| = R, it may converge or diverge, depending on the power series.

It turns out that power series always behave this way, even if

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣)
does not converge.
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Proposition 0.1. A power series
∞∑
k=0

ck(x− a)k always has a radius of con-

vergence R with 0 ≤ R ≤ ∞. The power series converges absolutely for
|x− a| < R and diverges for |x− a| > R.

If R = 0 the power series converges only for x = a and if R = ∞ it
converges for all x. For 0 < R <∞, the set of x for which the power series
converges is one of the intervals

(a−R, a + R), [a−R, a + R), (a−R, a + R], or [a−R, a + R].

This is called the interval of convergence of the series.

New Taylor Series from Old

If we compute the Taylor series for f(x) centered at a directly from the
formula for Taylor series, we can use the ratio test to find the radius of
convergence. For x within that radius of convergence of a, we hope that the
Taylor series for f(x) not only converges, but converges to f(x). The ratio
test cannot tell us that.

However, there is another way to arrive at Taylor series, and know they
converge to the function.

Theorem: Suppose the function f(x) is defined by a power series cen-
tered at a with radius of convergence R,

f(x) =
∞∑
k=0

ck(x− a)k.

Then the term-by-term derivative of the power series has the same radius of
convergence, and gives the derivative of f(x):

f ′(x) =
∞∑
k=0

kck(x− a)k−1.

The same is true for the term-by-term indefinite integral,∫
f(x) dx = C +

∞∑
k=0

ck
(x− a)k+1

k + 1
,

4



and definite integral, as long as b and d are in (a−R, a + R),

∫ d

b

f(x) dx =

[
∞∑
k=0

ck
(x− a)k+1

k + 1

] ∣∣∣∣∣
x=d

x=b

=
∞∑
k=0

[ck (x− a)k+1

k + 1

] ∣∣∣∣∣
x=d

x=b

 .

In particular, for a−R < x < a + R (inside the radius of convergence)∫ x

a

f(u) du =

[
∞∑
k=0

ck
(u− a)k+1

k + 1

] ∣∣∣∣∣
u=x

u=a

=
∞∑
k=0

([
ck

(x− a)k+1

k + 1

])
.

Example: Use this theorem to find a power series expansion (Taylor
series) for ln(x + 1) centered at a = 0.

For |x| < 1 we have:

1

1 + x
=

1

1− (−x)
=
∞∑
k=0

(−x)k =
∞∑
k=0

(−1)kxk

∫
1

1 + x
dx = C +

∞∑
k=0

(−1)k
xk+1

k + 1
= C +

∞∑
i=1

(−1)i−1
xi

i

Evaluating the integral,

ln(x + 1) = C +
∞∑
i=1

(−1)i+1x
i

i
= C + x− x2

2
+

x3

3
− x4

4
+ · · ·

Plugging in x = 0,

ln(1) = C therefore C = 0.

ln(x + 1) =
∞∑
i=1

(−1)i+1x
i

i
= x− x2

2
+

x3

3
− x4

4
+ · · ·

Our theorem says this holds for |x| < 1, and the series diverges for |x| > 1.
The theorem doesn’t tell us what happens if |x| = 1. If we care, we have to
check that separately.
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For this example, for x = 1 the series does converge to ln(2). For x = −1,

the series is −1− 1

2
− 1

3
− 1

4
−· · · . This is −1 times the harmonic series, and

the harmonic series diverges to ∞.

Example: It is possible to show that for all x (in other words, with
radius of convergence R =∞),

sin(x) =
∞∑
k=0

(−1)k
(

x(2k+1

(2k + 1)!

)
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

By this theorem we can take derivatives of each side, differentiating the power
series term-by-term, to get

cos(x) =
∞∑
k=0

(2k+1)(−1)k
(

x2k

(2k + 1)!

)
=
∞∑
k=0

(−1)k
(

x2k

(2k)!

)
= 1−x2

2!
+
x4

4!
−x6

6!
+· · · ,

with the same radius of convergence R =∞. This shows the Maclaurin series
for cos(x) also converges to cos(x) for every x.

Example: We have seen that for |x| < 1 we have

1

1− x
=
∞∑
k=0

xk.

Substituting x = −u2, we get

1

1 + u2
=
∞∑
k=0

(−u2)k =
∞∑
k=0

(−1)ku2k.

This holds for | − u2| < 1, which is to say, |u| < 1. Applying our theorem,
we get∫ x

0

1

1 + u2
du =

∫ x

0

(
∞∑
k=0

(−1)ku2k

)
dx =

∞∑
k=0

(∫ x

0

(−1)ku2k du

)
;

arctan(x) =
∞∑
k=0

(−1)k
x2k+1

2k + 1
= x− x3

3
+

x5

5
− x7

7
+ · · · .
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By the theorem, this has the same radius of convergence, namely 1, so this
is true for |x| < 1.

The theorem doesn’t tell us whether this is true for |x| = 1, that is, for
x = 1 or for x = −1. It turns out that it is true in both cases, so the interval
of convergence for this series is [−1, 1], and it converges to arctan(x) for every
x in that interval.

Proof That the Ratio Test Works: Suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

First, suppose that L > 1, and choose ε > 0 small enough that L−ε > 1.
By the definition of limit, there is some N such that whenever n > N we

have

∣∣∣∣an+1

an

∣∣∣∣− L < ε. This means that

∣∣∣∣an+1

an

∣∣∣∣ > L− ε > 1,

and that means that |an+1| > |an|. Since the individual terms of the series
are getting larger in absolute value, they are not approaching zero, and so
the series must diverge.

Now, suppose that L < 1, and choose ε > 0 small enough that L+ ε < 1.
By the definition of limit, there is some N such that whenever n > N we

have

∣∣∣∣an+1

an

∣∣∣∣− L < ε. This means that

∣∣∣∣an+1

an

∣∣∣∣ < L + ε.

Consider the series,
∞∑

n=N+1

|an|.

For this series, we have
|an+1|
|an|

< L + ε,

|an+1| ≤ (L + ε)|an|,
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which means the terms of the series are less than or equal to the terms of a
geometric series with first term aN+1 and ratio L + ε. Since L + ε < 1, this

geometric series converges, and therefore the smaller series
∞∑

n=N+1

|an+1| also

converges.

Since a tail end of the series
∞∑
n=0

|an| converges, the series itself converges.

This means the original series
∞∑
n=0

an is absolutely convergent, and therefore

it is convergent.
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