Math 8
 Winter 2020
 Volumes of Revolution

One of the applications of integration we derived in the last notes was a method of finding volumes:

Volumes by Slicing: To find the volume of a solid object occupying the region in space between $x=a$ and $x=b$, where x is measured along some straight axis, integrate the object's cross-sectional area between $x=a$ and $x=b$. More precisely, suppose $A(x)$ is the cross-sectional area at x; that is, the cross-sectional area we get if we slice the object at the point x, perpendicularly to the axis. Then the volume of the object is given by

$$
V=\int_{a}^{b} A(x) d x
$$

Volumes of Revolution by Slicing: This is a special case of volumes by slicing. Suppose the portion of the graph $y=f(x)$ for $a \leq x \leq b$ is revolved around the x-axis, and we want to find the volume of the solid region inside the surface it sweeps out. (Imagine taking the half circle $y=\sqrt{1-x^{2}}$ for $-1 \leq x \leq 1$ and revolving it around the x-axis. The resulting surface is a sphere centered at the origin of the $x y$-plane. We want to find the volume inside that sphere.)

Consider slicing this solid region perpendicular to the x-axis at a point x. The resulting cross-section is a disc with radius $f(x)$ (or $|f(x)|$ if $f(x)<0$) and so the cross-sectional area at x is $A(x)=\pi(f(x))^{2}$. Therefore, the volume is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi(f(x))^{2} d x
$$

Note: This method is also called volumes by discs, as the cross-section at x is a disc. A slightly more general method is called volumes by washers, as the cross-section at x looks like the piece of hardware called a washer, as in the following example.

Example: Find the volume of the region generated by revolving the region above the parabola $y=x^{2}$ and below the line $y=x$ around the x-axis.

The yellow region above is revolved around the x-axis. To visualize the cross-section of the resulting solid at x, imagine revolving the solid red line segment around the x-axis. You will get a two-dimensional region that looks like a disc with a smaller disc removed:

The radius of the smaller disc is the length of the dashed red line, or x^{2}, and the radius of the larger disc is the length of the dashed red line together with the solid red line, or x. Therefore the cross-sectional area is the area of the larger disc minus the area of the smaller disc,

$$
A(x)=\pi x^{2}-\pi\left(x^{2}\right)^{2}=\pi\left(x^{2}-x^{4}\right)
$$

and we can integrate this to get the volume:

$$
\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi\left(x^{2}-x^{4}\right) d x=\left.\pi\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{x=0} ^{x=1}=\frac{2 \pi}{15}
$$

Volumes of Revolution by Shells:

Here is a different method, not volumes by slicing, to find a volume of revolution. We'll look at the same example as before, and divide the region we are revolving around the x-axis into thin horizontal bands of height Δy :

We focus on the band containing the red line segment at height y_{i}^{*}. This red line segment has left endpoint at $x=y_{i}^{*}$ and right end at $x=\sqrt{y_{i}^{*}}$, so its length is $\sqrt{y_{i}^{*}}-y_{i}^{*}$. If we revolve that line segment around the x-axis, we get a cylinder, of height (or length, since it is oriented horizontally instead of vertically) $\sqrt{y_{i}^{*}}-y_{i}^{*}$ and radius y_{i}^{*}, as in the picture below.

This cylinder is a surface with area (via the formula $A=2 \pi r h$) equal to $2 \pi\left(y_{i}^{*}\right)\left(\sqrt{y_{i}^{*}}-y_{i}^{*}\right)$.

If Δy is small enough, when we revolve the band containing that red line segment around the x-axis, we get a three-dimensional object that looks approximately like that same cylindrical surface, made three-dimensional by giving it a thickness of Δy. The volume of that object is approximately Δy times the surface area of the cylinder, or $2 \pi\left(y_{i}^{*}\right)\left(\sqrt{y_{i}^{*}}-y_{i}^{*}\right) \Delta y$.

We approximate the volume of our object by adding up the approximate volumes of all the slices,

$$
V \approx \sum_{i=1}^{n} 2 \pi\left(y_{i}^{*}\right)\left(\sqrt{y_{i}^{*}}-y_{i}^{*}\right) \Delta y
$$

and take the limit as $n \rightarrow \infty$ to find an integral that gives the volume,

$$
V=\int_{0}^{1} 2 \pi(y)(\sqrt{y}-y) d y
$$

Here is the method, in general. We are revolving our region around one axis (the x-axis in this example) and we are going to integrate along a second axis perpendicular to the axis of rotation (the y-axis). At each point y on the axis of integration, we draw a line segment across our region, of length $\ell(y)$ (in our example, $\ell(y)=(\sqrt{y}-y)$) and a distance $d(y)$ from the axis of rotation (in our example $d(y)=y$).

Revolving that line segment around the axis of rotation gives a cylinder of area $C(y)=2 \pi d(y) \ell(y)$. We integrate this cylindrical area over the interval $c \leq y \leq d$ our region occupies,

$$
\int_{c}^{d} C(y) d y=\int_{c}^{d} 2 \pi d(y) \ell(y) d y
$$

It is important to keep your axes straight, so let us recap:
Volumes by discs or washers: Integrate the cross-sectional area along the axis around which you are revolving. In this picture, we revolve around the x-axis, and we get $\int_{a}^{b} A(x) d x$.

Volumes by shells: Integrate the cylindrical-sectional area along an axis perpendicular to the one around which you are revolving. In this picture, we revolve around the x-axis, and we get $\int_{c}^{d} C(y) d y$.

