Math 8

Winter 2020
Section 1
January 10, 2020
Differentiating e^{x}

Question: How do we show

$$
\frac{d}{d x} e^{x}=e^{x} ?
$$

First, it depends on how e is defined. You may have seen

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

given as the definition of e. This isn't our textbook's approach, but let's use this definition, and try to compute the derivative of $f(x)=e^{x}$.

$$
\frac{d}{d x} e^{x}=\lim _{t \rightarrow 0} \frac{e^{x+t}-e^{x}}{t}=\lim _{t \rightarrow 0} \frac{e^{x}\left(e^{t}-1\right)}{t}=e^{x} \lim _{t \rightarrow 0} \frac{e^{t}-1}{t}
$$

In other words, the derivative of e^{x} is a constant multiple of e^{x}, and that constant is $\lim _{t \rightarrow 0} \frac{e^{t}-1}{t}$. (We are taking it on faith that this limit exists.) We will call this limit L :

$$
L=\lim _{t \rightarrow 0} \frac{e^{t}-1}{t} \quad \frac{d}{d x} e^{x}=L e^{x} .
$$

We want to show that $L=1$.
The natural logarithm $\ln (x)$ is defined as the inverse function to e^{x}, so we can use the inverse function rule to compute its derivative:

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \quad \frac{d}{d x}(\ln (x))=\frac{1}{L e^{\ln (x)}}=\frac{1}{L x}
$$

Now we will use our definition of e :

$$
e^{1}=e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}=e^{\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)}
$$

This gives us (using l'Hôpital's Rule at step *)

$$
1=\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=^{*} \lim _{n \rightarrow \infty} \frac{\frac{1}{L\left(1+\frac{1}{n}\right)}\left(\frac{-1}{n^{2}}\right)}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{L\left(1+\frac{1}{n}\right)}}{1}=\frac{1}{L} .
$$

So $L=1$, which is what we needed to show.

