The Comparison Test and Alternating Series

October 16, 2007

The Comparison Test

Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms.

1. If $\sum_{n=1}^{\infty} b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all
n, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
2. If $\sum_{n=1}^{\infty} b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all
n, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent.

The Limit Comparison Test

Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.

Alternating Series

Definition: An alternating series is a series whose terms are alternately positive and negative. I.e.

$$
\sum_{n=1}^{\infty} a_{n}
$$

is alternating if $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n-1} b_{n}$.

The Alternating Series Test

If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots
$$

$b_{n}>0$ satisfies

1. $b_{n+1} \leq b_{n}$ for all n
2. $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

Alternating Series Estimation Theorem

If $s=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies
(1) $0 \leq b_{n+1} \leq b_{n} \quad$ and
(2) $\lim _{n \rightarrow \infty} b_{n}=0$ then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$.

