The Comparison Test and Alternating Series

October 16, 2007

The Comparison Test

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

1. If
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \le b_n$ for all
n, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

2. If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$ for all *n*, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

1

The Limit Comparison Test

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

Alternating Series

Definition: An alternating series is a series whose terms are alternately positive and negative. I.e.

$$\sum_{n=1}^{\infty} a_n$$

is alternating if $a_n = (-1)^n b_n$ or $a_n = (-1)^{n-1} b_n$.

The Alternating Series Test

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$

$$b_n > 0 \text{ satisfies}$$

1.
$$b_{n+1} \leq b_n$$
 for all n

2.
$$\lim_{n \to \infty} b_n = 0$$

then the series is convergent.

Alternating Series Estimation Theorem

If $s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is the sum of an alternating series that satisfies (1) $0 \le b_{n+1} \le b_n$ and (2) $\lim_{n \to \infty} b_n = 0$ then $|R_n| = |s - s_n| \le b_{n+1}$.