Introduction to coordinates and vectors

October 29, 2007

Cartesian (Rectangular) Coordinates system

Distance between two points

Let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ be two points in three dimensions, the distance between the points is
$\left|P_{1} P_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$

Equation of a sphere

The equation of a sphere with center $C(h, k, l)$ and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

Constant planes

Let a, b, c be any constants, then
$x=a$ is a plane parallel to the $y z$-plane.
$y=b$ is a plane parallel to the $x z$-plane.
$z=c$ is a plane parallel to the $x y$-plane.

Position Vector and Displacement Vector

Vector Addition - Geometrically

Vectors in the vector space \mathbb{R}^{n}

In this class a scalar is simply a real number. An element in \mathbb{R}.

A vector in \mathbb{R}^{2} is a pair $\langle x, y\rangle$ of real numbers.
A vector in \mathbb{R}^{3} is a triple $\langle x, y, z\rangle$ of real numbers.

A vector in \mathbb{R}^{n} is an n-tuple $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ of n real numbers.

Operations on vectors - Algebraically

Vector Addition: Let $\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ in \mathbb{R}^{n} then their sum is

$$
\mathbf{a}+\mathbf{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right\rangle
$$

Scalar Multiplication: Let $\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ be a vector in \mathbb{R}^{n} and k any scalar then

$$
k \mathbf{a}=\left\langle k a_{1}, k a_{2}, \ldots, k a_{n}\right\rangle
$$

Vector between two points

Let $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ be two points, the vector from A to B is

$$
\overrightarrow{A B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

Length of a vector

For a vector $\mathbf{a} \in \mathbb{R}^{2}, \mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

For a vector $\mathbf{a} \in \mathbb{R}^{3}, \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

The standard basis vectors

The standard basis vectors in \mathbb{R}^{2} are $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$.

The standard basis vectors in \mathbb{R}^{3} are $\mathbf{i}=\langle 1,0,0\rangle$ and $\mathbf{j}=\langle 0,1,0\rangle$ and $\mathbf{k}=\langle 0,0,1\rangle$.

The standard basis vectors in \mathbb{R}^{n} are $\mathbf{e}_{1}=\langle 1,0, \ldots, 0\rangle, \mathbf{e}_{2}=\langle 0,1,0, \ldots, 0\rangle, \ldots$, $\mathbf{e}_{n}=\langle 0, \ldots, 0,1\rangle$.

