Functions in several variables and limits

November 12, 2007

Functions

Any function has three features:

- A domain set X;
- A range or codomain set Y;
- A rule of assignment - a rule that assign to each element x in X of the domain a "unique" element $f(x)$ in Y (the codomain).

The Range or Codomain of a function

Definition: The Image of a function f : $X \rightarrow Y$ is the set of elements of Y that are actual values of f.

Image $(f)=\{y \in Y \mid y=f(x)$ for some $x \in X\}$.

Scalar-valued functions

Scalar valued functions are functions such that the domain is $X \subseteq \mathbb{R}^{n}$ and the range (or codomain) is \mathbb{R} or a subset of \mathbb{R}.

Vector-valued functions

Vector valued functions are functions such that the domain is $X \subseteq \mathbb{R}^{n}$ and the range (or codomain) is \mathbb{R}^{m} or a subset of \mathbb{R}^{m}.

One-to-one and Onto

Definition: A function $f: X \rightarrow Y$ is onto (or surjective) if every element of Y is the image of some element of X, that is

$$
\text { Image }(f)=Y
$$

Definition: A function $f: X \rightarrow Y$ is called one-to-one (or injective) if no two distinct elements of the domain have the same image under f. That is, f is one-to-one if for any two $a, b \in X$ with $a \neq b$ then $f(a) \neq f(b)$.

The Graph of a function

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar valued function. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the graph of f is:

$$
\text { Graph } f=\left\{(\mathbf{x}, f(\mathrm{x})) \mid \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right\}
$$

For example if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then the graph of f is the set of points in \mathbb{R}^{3} that look like $(x, y, f(x, y))$, where (x, y) is in \mathbb{R}^{2}.

Level Curves

Let f be a function of two variables and let c be a constant. The set of all (x, y) in the plane such that $f(x, y)=c$ is called a level curve of f with value c.

Definition of limit

Definition: Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that given $\epsilon>0$, you can find a $\delta>0$ (often depending on ϵ) such that if $\mathbf{x} \in X$ and $0<\|\mathrm{x}-\mathbf{a}\|<\delta$, then $|f(\mathrm{x})-L|<\epsilon$

Properties of limits

1. If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$ and $\lim _{\mathrm{x} \rightarrow \mathbf{a}} g(\mathrm{x})=M$ then $\lim _{\mathbf{x} \rightarrow \mathbf{a}}\left(f^{\mathbf{x} \rightarrow \mathbf{a}} g\right)(\mathbf{x})=L+M$.
2. If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$, then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} k f(\mathrm{x})=k L$, where k is a scalar.
3. if $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathrm{x})=L$ and $\lim _{\mathrm{x} \rightarrow \mathbf{a}} g(\mathrm{x})=M$ then $\lim _{\mathbf{x} \rightarrow \mathbf{a}}(f g)(\mathbf{x})=L M$
4. If $\lim _{\mathrm{x} \rightarrow \mathrm{a}} f(\mathrm{x})=L$ and $g(\mathrm{x}) \neq 0$ for $\mathrm{x} \in X$, and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(\mathbf{x})=M \neq 0$, then $\lim _{\mathbf{x} \rightarrow \mathbf{a}}\left(\frac{f}{g}\right)(\mathbf{x})=\frac{L}{M}$.

Continuous Functions

Definition: Let $\mathrm{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let

 $\mathbf{a} \in X$. Then, f is continuous at \mathbf{a} if$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

f is called continuous if it is continuous at every point of the domain X.

- The sum $f+g$ of two continuous functions is a continuous function.
- The scalar multiple of a continuous function $k f$ is continous.
- The product $f g$ and the quotient f / g (when defined) of two continuous functions is continuous.

