Partial Derivatives

November 13, 2007

Partial Derivative

Partial derivatives are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation.
Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ then the partial derivative with respect to x_{i} is:
$\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}$
we also use $f_{x_{i}}$ for partial derivative with respect to x_{i}.

Partial derivative for two variable function

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& \frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Rule for taking partial derivatives

To find $\frac{\partial f}{\partial x}$, think of y as a constant and differentiate $f(x, y)$ with respect to x.

Higher order partial derivatives

$$
\begin{aligned}
& f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
& f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
& f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \\
& f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}
\end{aligned}
$$

Clairaut's Theorem

Suppose that f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{x y}$ are continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Tangent Plane

Theorem: If the graph of $f(x, y)$ has a tangent plane at $(a, b, f(a, b))$, then the tangent lane has equation

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Function with partial derivatives and no tangent plane

Example: $\quad f(x, y)=||x|-|y||-|x|-|y|$

Differentiable

Definition: A function f is called differentiable at (a, b) if the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ exist and if the the function
$L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$
is a good linear approximation to f near the point (a, b). I.e.

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-L(x, y)}{\|(x, y)-(a, b)\|}=0
$$

Theorem: If the partial derivatives f_{x} and f_{y} exist near (a, b) and they are continuous at (a, b) then f is differentiable.

Vector and Matrix notation for $L(x, y)$

$$
\begin{aligned}
L(x, y) & =f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& =f(a, b)+\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\langle x-a, y-b\rangle \\
& =f(a, b)+\left(\begin{array}{cc}
f_{x}(a, b) & \left.f_{y}(a, b)\right)\binom{x-a}{y-b}
\end{array}, ~\right.
\end{aligned}
$$

