Minimum and Maximum

 Points

 Points}

November 28, 2007

Local Maximum and Local Minimum

Definition: A function f of two variables has a local maximum at (a, b) if $f(x, y) \leq$ $f(a, b)$ when (x, y) is in a neighborhood of (a, b). [This means that $f(x, y) \leq f(a, b)$ for all points (x, y) in some disk with center (a, b).] The number $f(a, b)$ is called a local maximum value.

If $f(x, y) \geq f(a, b)$ when (x, y) is in a neighborhood of (a, b), then f has a local minimum at (a, b) and $f(a, b)$ is a local minimum value.

Critical Points

A point (a, b) is called a critical point (or stationary point) of f if

$$
\nabla f(a, b)=\langle 0,0\rangle
$$

or if of of this partial derivatives does not exist.

Local max and min points are critical points

Theorem: If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, that is $\nabla f(a, b)=\langle 0,0\rangle$.

Second Derivative Test

If (a, b) is a critical point of $f(x, y)$ and the second order partial derivatives are continuous in a region that contains (a, b). Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

Then

(1) If $D>0$ and $f_{x x}(a, b)>0$, then (a, b) is a local minimum.
(2) If $D>0$ and $f_{x x}(a, b)<0$, then (a, b) is a local maximum.
(3) If $D<0$, then (a, b) is a saddle point.
(4) If $D=0$, this test is inconclusive.

Absolute Maximum and Minimum

Definition: A function f of two variables has an absolute maximum at (a, b) if $f(x, y) \leq$ $f(a, b)$ for every (x, y) in the domain of f.

If $f(x, y) \geq f(a, b)$ for every point (x, y) in the domain of f, then f has an absolute minimum at (a, b).

Boundary points, closed sets and bounded sets

Definition: A point (a, b) in a subset D of \mathbb{R}^{2} is a boundary point of D such that every disk with center (a, b) contains some points in D and points not in D.

Definition: A closed set in \mathbb{R}^{2} is one that contains all its boundary points.

Definition: A bounded set in \mathbb{R}^{2} is on that is contained in some disk.

Extreme value theorem for functions in two variables

If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and and absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.

Finding absolute max and min values
D is closed, bounded set and f is continuous.
(1) Find the values of f at the critical points of f in D.
(2) Find the extreme values of f on the boundary of D.
(3) The largest of the values from step 1 and 2 is the absolute maximum value and the smallest of these values is the absolute minimum value.

