Math 9 Fall 19 Homework 6 (Due on Nov 6 before class)

- (1) (3 pts) Linear Algebra 5.6.7
- (2) (3 pts) Linear Algebra 5.6.8
- (3) (3 pts each) Recall that a rotation of degree θ , denoted by Rot_{θ} , is a linear transformation whose representing matrix can be written as

$$[Rot_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

(a) Let T be a linear transformation with

$$[T] = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Is T a rotation? Why?

- (b) Verify that the rotation $\operatorname{Rot}_{\alpha} \circ \operatorname{Rot}_{\beta}$ is the rotation $\operatorname{Rot}_{\alpha+\beta}$.
- (c) Let $S, L: \mathbb{R}^2 \to \mathbb{R}^2$ be two linear transformations. Suppose that L is a rotation, but S is not a rotation. Can their compositions $S \circ L$ and $L \circ S$ be rotations? (extra credit)
- (4) (3 pts) Linear Algebra 6.1.5
- (5) (3 pts) Linear Algebra 6.2.2 (We will cover this problem on Monday)