Math 9 Fall 19 Homework 8 (Due on Nov 6 before class)

- (1) (3 pts) Linear Algebra 6.4.3
- (2) (3 pts) Suppose that $z = 2x^2y + 4x$, x = s + t u, $y = s + t^2$. Find $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, and $\frac{\partial z}{\partial u}$ when s = t = u = 1. Your final answers should be numbers.
- (3) (3 pts) Let $f(x, y, z) = z \ln x^2 y$.
 - (a) Find the maximum and minimum rate of change of f(x, y, z) at (1, 1, 3).
 - (b) In what direction does f have the maximum rate of change?
 - (c) In what direction does f have the minimum rate of change?
- (4) (3 pts) Find points on the ellipsoid

$$\frac{x^2}{4} + y^2 + z^2 = 3$$

such that the tangent plane to the ellipsoid at the point is parallel to

$$3x + 2y + 2z = 3.$$

- (5) (6 pts) Let S_1 be the paraboloid $z = x^2 + y^2$ and S_2 be the ellipsoid $4x^2 + y^2 + z^2 = 9$.
 - (a) Verify that (-1, 1, 2) is on \mathcal{S}_1 and \mathcal{S}_2 .
 - (b) Find the tangent plane P_1 to S_1 at (-1, 1, 2) and the tangent plane P_2 to S_2 at (-1, 1, 2).
 - (c) Let \mathcal{C} the curve of intersection of \mathcal{S}_1 and \mathcal{S}_2 . Sketch the curve \mathcal{C} .
 - (d) Explain why the tangent line to C at (-1, 1, 2) is actually the intersection of P_1 and P_2 .
 - (e) Use previous parts to find parametric equations to C at (-1, 1, 2).
- (6) (3 pts each) Find critical points of the following functions and determine whether each of the critical points is a local max, a local min, a saddle, or undetermined.

(a)
$$f(x,y) = 2 - y^4 + 2y^2 - 4x^2$$

(b)
$$g(x,y) = (x^2 + 2y - y^2)e^{-x}$$