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The Basics of Multiple Regression

5.1.  The Basics

Education is not the only factor that affects pay.  As shown in Figure 4.2, even for
workers with the same education, there is remarkable variation in wages.  Surely, some of this
variation is due to work experience, unionization, industry, occupation, region, and
demographics, such as gender, race, marital status, etc. These easily can be accounted for using
multiple regression.

For example, one could think of wages as a function of education and work experience:

  Wage = f (Education, Experience) .

The longer one spends on a job, the better one gets.  If people are paid for their productivity, then
workers with more work experience should be more productive, and therefore, paid more.  That
is,

∆Wage

∆Experience
> 0 ,

other things equal.

The complete relationship between wages, education, and experience can be written as

ln(Wagei ) = β1 + β2Educationi + β3Experiencei + ui, (1)

where wages are measured in natural logs. This is a multiple regression model of wages.
Because there is more than one explanatory variable, each parameter is interpreted as a partial
derivative, or the change in the dependent variable for a change in the explanatory variable,
holding all other variables constant. For example,

Education
Experience

Wage

Experience

Wage

∆

∆
≈=

)ln()ln(
3

∂
∂

β (2)

is the effect of experience on the log wage, holding education constant. Other ways of saying
"holding experience constant" are "controlling for experience" or "accounting for the effect of
experience." Because pay is measured in natural logs, β3  also can be interpreted as

β3 =
%∆Wage

∆Experience
Education

 , (3)

or the "return to experience" in the labor market.

If we group all workers according to their education level (less than high school, high
school, some college, college graduates, and more than college), we can compare wages and
work experience within education categories. This is really what multiple regression does.  By
looking within categories, you are holding education constant. From the univariate analysis in
Chapter 4, we know that wages increase with education level. Table 5.1 shows that within any
given education category (i.e., reading across rows), hourly wages rise with greater work
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experience. This suggests 3β  is positive, so that wages increase with work experience
controlling for education, but also that work experience explains some of the residual variation in
wages within education levels.

_____________________________________________________________________________

Table 5.1

      Means, Standard Deviations and Frequencies of Hourly Wages

Years of   |                 Years of Work Experience
Education  |
           |    exp<=5    5<x<=10   10<x<=20   20<x<=30     exp>30 |     Total
-----------+-------------------------------------------------------+----------
   Educ<12 |  6.610577  8.3096154   8.506556  8.6632116  11.499039 |  9.310918
           | 2.2335515  4.5823646  3.2871646  3.8071621  9.4367496 | 6.0386959
           |         4         10         22         25         25 |        86
-----------+-------------------------------------------------------+----------
   Educ=12 | 8.5617234  10.222842  11.647422  15.137898  13.069812 | 12.522641
           | 3.8917755  6.1940197  7.0772693  7.2318973  6.6605462 | 6.9705726
           |        26         45        102         93         96 |       362
-----------+-------------------------------------------------------+----------
   Educ=13 | 6.0346955  11.595442  12.601342  17.252274  16.064233 | 13.730448
           | 2.2878627  5.0236677   6.807096    8.68351  9.4877654 | 8.0749169
           |        18         27         67         52         38 |       202
-----------+-------------------------------------------------------+----------
13<Educ<=16| 12.018377  11.547343  19.680886  18.701486  18.666967 | 16.868053
           | 5.1686776  4.4477838   10.56787  8.6071216  12.906913 | 9.5829901
           |        40         38         78         66         31 |       253
-----------+-------------------------------------------------------+----------
   Educ>16 | 17.574786  22.328942  28.116649  22.697912  26.153953 | 24.389087
           | 6.5705128  11.500545  13.368682  10.918406  10.881327 | 11.893388
           |         9         15         35         32          9 |       100
-----------+-------------------------------------------------------+----------
     Total | 10.274019  12.073586  15.587707  16.724456  14.907941 | 14.769702
           | 5.5195622  7.2312446  10.452645  8.8239055  9.4999288 |  9.257249
           |        97        135        304        268        199 |      1003

________________________________________________________________________________

Likewise,
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is the effect of education on the log wage, holding experience constant.  β2  also can be expressed
as

β2 =
%∆Wage

∆Education Experience

, (5)

or the return to education in the labor market.
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If we group workers according to years of work experience (0-5, 5-10, 11-20, 21-30,
>30), we can compare wages and education within work experience categories.  Again, this is
what multiple regression does.  By looking within experience categories, we are holding
experience constant. In Table 5.1, within any given experience category (reading down
columns), the hourly wage rises with education. This suggests 2β  is positive, so that wages
increase with education even when controlling for work experience.

Importantly, multiple regression recognizes possible interdependence among explanatory
variables.  For example, for any individual, education and work experience are determined in
part by the underlying decision to allocate time.  Individuals can go to school or work.  Those
with more education will have less work experience, and vice versa, holding other factors such
as age constant. Thus, education and experience are interdependent.  In fact, they are inversely
correlated since the sample correlation coefficient, r= –0.186.

This interdependence implies that some of the population variation in education and
experience is common.  The Venn diagram in Figure 5.1 illustrates this. The two circles
represent the variation in education and experience, respectively.  Area B is the intersection and
represents the variation shared by the variables. This is the co-variation between education and
experience.  Area A is the remaining variation in education and is due to influences other than
experience, and hence, is independent of experience.  Similarly, area C is the remaining variation
in experience, independent of education.

When estimating parameters, least squares uses only the independent variation in each
explanatory variable to estimate that variable's parameter. To estimate β2 , only the independent
part of education is used.  The formula for the least squares estimator of β2  is

√β2 =
C √ov(ln(Wage), Independent Part of Education)

V √ar(Independent Part of Education)
. (6)

and for β3 ,

√β3 =
C √ov(ln(Wage), Independent Part of Experience)

V √ar(Independent Part of Experience)
. (7)

Table 5.2 shows parameter estimates, standard errors and 95% confidence intervals for
simple and multiple regression models of the log wage.

________________________________

Table 5.2 Regression of Log Wages against Education and Experience

Explanatory Variable   (1)  (2)  (3)

Education 0.0933 0.1035
     (0.0067)  ----      (0.0066)
(0.0801, 0.1064)
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Experience 0.0084 0.0129
----       (0.0017)      (0.0015)

(0.0051, 0.0117)   (0.0098, 0.0159)

Constant 1.2597 2.3456 0.8629
     (0.0919)     (0.0389)      (0.1008)
(1.0793, 1.4399)  (2.2692, 2.4220)   (0.6651, 1.0607)

R2 0.162 0.024 0.217
________________________________

For the simple regression model 1,

ln(Wagei ) = β1 + β2Educationi + ui ,

an additional year of education is estimated to raise log wages by 0.0933 or in terms of  relative
change in wages, by a factor of exp(0.0933)=1.098 with a 95% confidence interval of
(exp(0.0801), exp(0.1064)) = (1.08, 1.11). Economists often say that the increase in percent
wages is 9.3%, an approximation. This is a moderately good return to a one-year investment!

Alternatively, for model 2,

ln(Wagei ) = β1 + β2Experiencei + ui ,

an additional year of experience is estimated to raise the log wage by 0.0084 or to raise the wage
by a factor of exp(0.0084)=1.0084 or 0.84%. To put this finding in a more meaningful context,
an additional 10 years of experience raises the log wages by 0.084, or raises wages by a factor of

exp(0.084)=1.088 or 8.8%. 
2R  is 0.024, which means that variation in experience alone explains

just 2.4% of the sample variation in log wages.

The estimates for the multiple regression model 3,

ln(Wagei ) = β1 + β2Educationi + β3Experiencei + ui,

show that together, education and experience explain 21.7% of the variation in log wages. This is
much more than both explain individually (16.2% and 2.4%).  So, the whole is greater than the
sum of its parts!

Accounting for the effect of experience on wages, an additional year of education is
estimated to raise the log wage by 0.1035 or the actual wage by a factor of exp(0.1035)=1.109 or
10.9% (Economists 10.4%).  In addition, accounting for the effect of education on wages, an
additional year of experience is estimated to raise the log wage by 0.0129 or wages by a factor of
1.013 or 1.3%.   Surprisingly, the return to an additional year of experience is significantly less
than the return to an additional year of education.  In fact, based on these estimates, it would
require an additional 8.4 years of work experience to raise wages by the same percent as an
additional year of education (10.9/1.3=8.4). Education seems like a good deal!

Interestingly, the estimated effects of education and experience on wages change
substantially from simple to multiple regression.  An additional year of education is estimated to
raise the wages by 9.8% in model (1) but by 10.9% in model (3).  That is, the estimated return
rises by more than a percentage point once differences in work experience are taken into account.
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Because this is a big difference in the return on an investment---you would much prefer a 10.4%
to a 9.3% return---it is natural to ask: "Why did this happen?"

The answer is at the heart of multiple regression.  There are many less-educated (but
more-experienced) workers that earn as much as more-educated (but less-experienced) workers.
Without accounting for differences in experience, the better educated appear to get a lower return
to education. Is this "low return" really because of education?  No, it is because of experience.

Simple linear regression does not account for experience; however, multiple regression
does. Once differences in experience across workers are taken into account, an additional year of
education has a much bigger payoff and the estimated return to education rises.  Because
education and experience are correlated (or interdependent), simple regression confuses or
"confounds" the effect of education on wages with the effect of experience on wages.  By
acknowledging potential correlation between the explanatory variables, multiple regression
neatly sorts out each variable's independent effect.  Section 6 will discuss "confounding effects"
in more detail.

5.2.  Gender and Wages

A question of great public interest is whether there is gender inequality in earnings, and,
if so, what accounts for it.  The basic comparison of average wages for men and women in
section 3 showed that women earn $4.90 per hour less than men.  Because men's average
earnings were $17.05, this implies that, on average, women earn about 28.7% less than men
(4.90/17.05=0.287).

If pay is based solely on productivity, then this differential could be economically
rational only if there were some innate underlying difference in productivity between the sexes.
In this case, men would have to be more productive than women to justify their higher wages.  If
one believes the sexes are equal, then gender difference in wages must be caused by something
else.  One view is that there is labor market discrimination against women.  Another is that there
are other, confounding factors that affect wages but happen to be correlated with gender.
Multiple regression can account for these additional factors.  If gender-based wage differentials
exist even after controlling for many possible confounding influences, then more credence might
be given to the discrimination explanation.

The effect of gender on wages can be modeled simply as

ln(Wagei ) = β1 + β2Femalei + ui , (8)

where Female is an indicator variable that is 1 if the worker is female and 0 otherwise
(which, of course, means male). A 0-1 indicator variable such as this is frequently
referred to as a categorical or dummy variable. β2  is the relative change in the wage from
going from the 0 category to the 1 category.   The way to think about β2  in this context is
to observe the wage of worker first as a male, and then "transform" the worker into a
female and observe the wage.  If the wage rises, β2  is positive and women earn more than
men.  That is, there is a labor marker "premium" to being a woman.  If the wage does not
change, β2  is zero and gender has no effect on wages.  Finally, if the wage falls, β2  is
negative and men earn more than women.  That is, there is a labor market discount to
being a woman.

Based on the comparison of mean wages above, one expects β2  to be negative.  The least
squares estimate is shown in column (1) of Table 5.3.
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________________________________

Table 5.3 Regression of Log Wages against Female, Education and Experience

Explanatory Variable   (1)  (2)  (3)

Female 0.0933 0.1035
     (0.0067)  ----      (0.0066)
(0.0801, 0.1064)

Education 0.0933 0.1035
     (0.0067)  ----      (0.0066)
(0.0801, 0.1064)

Experience 0.0084 0.0129
----       (0.0017)      (0.0015)

(0.0051, 0.0117)   (0.0098, 0.0159)

Constant 1.2597 2.3456 0.8629
     (0.0919)     (0.0389)      (0.1008)
(1.0793, 1.4399)  (2.2692, 2.4220)   (0.6651, 1.0607)

R2 0.162 0.024 0.217
________________________________

√β2 = −0.3193, which says that females earn 31.9% less than males.  The 95% confidence
interval is (-0.3918, -0.2468) and does not include zero.  Therefore, this discount to being
female is statistically significantly different from zero.

In theory, one explanation for this wage differential could be differences in
education between men and women.  If men had more education than women on average,
then that could explain the gender differential.  Unfortunately, this is not the case.  From
section 3 above, the sample mean education is 13.48 years for men, but 13.42 years for
women.  That is, men and women have almost identical education levels!  In fact, the
sample correlation between Education  and Female is -0.01.  Effectively, the variables
are uncorrelated.  Therefore, differences in education will not explain the gender
difference in wages.

This can be seen in two ways.  First, Table 5.4 compares mean hourly wages for
males and females within education categories.  Remember, this is akin to what least
squares does to estimate the effect of Female on wages holding Educationconstant in a
multiple regression.

__________________________________________________________________
Table 5.4

      Means, Standard Deviations and Frequencies of Hourly Wages

Years of   |     Gender
Education  |
     |      Male     Female |     Total
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-----------+----------------------+----------
   Educ<12 | 10.609443   7.225408 |  9.310918
           | 6.9104135    3.46186 | 6.0386959
           |        53         33 |        86
-----------+----------------------+----------
   Educ=12 | 14.280749  10.601934 | 12.522641
           | 7.5401576  5.7210515 | 6.9705726
           |       189        173 |       362
-----------+----------------------+----------
   Educ=13 | 16.397839  10.955284 | 13.730448
           | 8.9813645  5.8753599 | 8.0749169
           |       103         99 |       202
-----------+----------------------+----------
13<Educ<=16| 19.477352  14.110256 | 16.868053
           | 10.390313  7.7854763 | 9.5829901
           |       130        123 |       253
-----------+----------------------+----------
   Educ>16 | 26.977737  20.165499 | 24.389087
           |  13.00519   8.371838 | 11.893388
           |        62         38 |       100
-----------+----------------------+----------
     Total | 17.048445   12.14377 | 14.769702
           | 10.240742   7.132306 |  9.257249
           |       537        466 |      1003
____________________________________________________________________

It is easy to see that within all categories, males are paid more females.  Therefore,
education cannot explain the gender wage differential.

Second, column (2) of Table 5.3 gives parameter estimates for the multiple
regression model

ln(Wagei ) = β1 + β2Femalei + β3Education + ui . (9)

β2  measures the effect of being female on wages (in relative terms), controlling for

education.  √β2 = −0.3137, which says that females earn 31.4% less than males, even after
accounting for any differences in education between the sexes!   This estimate is virtually
unchanged from its value in column (1). The 95% confidence interval is (-0.3797, -
0.2477) and does not include zero.  Therefore, this discount to being female is
statistically significantly different from zero.

The estimated relationship between wages, education, and gender also can be
illustrated graphically.  Figure 5.1 demonstrates that regressing log wages on education
and gender has the effect of fitting separate parallel lines to the relationship between log
hourly wages and education for males and females. Parallel lines mean that the increase
in log wages for an additional year of education (or the return to education) is the same
for males and females, and averages about 0.093 (or 9.3%).  The distance between the
lines for males and females represents the effect of gender: the line for males is 0.3137
log dollars (or 31.37%) higher than the line for females.  Figure 5.2 shows the same
relationship, but expressed in terms of the wage rather than the log wage.

Another potential explanation for the gender wage differential could be
differences in work experience between men and women.  If men had more experience
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than women on average, then that could explain the gender differential.  Again, this is not
the case.  From section 3, the sample mean experience is 19.72 years for men, but even
more, 20.63 years, for women.  That is, women have slightly more experience than men.
The sample correlation between Experience and Female is 0.041.  Effectively, the
variables are uncorrelated.  Therefore, differences in experience will not explain the
gender difference in wages.

This is illustrated nicely in column (2) of Table 5.2, which gives parameter
estimates for the multiple regression model

ln(Wageie ) = β1 + β2Femalei + β3Education + β4Experience + ui . (9)

β2  measures the effect of being female on wages (in relative terms), controlling for

education and experience.  √β2 = −0.3252, which says that females earn 32.5% less than
males, even after accounting for any differences in education and experience between the
sexes.  The 95% confidence interval is (-0.3887, -0.2617) and does not include zero.
Therefore, this discount to being female is statistically significantly different from zero.
The R2  is 0.289, which means that variation in education, experience, and gender
explains 28.9% of the sample variation in log wages.


