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The Basics of Simple Linear Regression

1. Terminology

Differences in hourly wages might be determined by differences in education.1
In particular, the relationship between the hourly wage and education can be thought of
as a mathematical function:

Wage = f (Education ) . (1)

Wage  is the dependent variable.  The dependent variable measures the behavior or
outcome to be explained.   The letter Y is often used as mathematical shorthand for a
generic dependent variable.

Education is an explanatory variable.  Explanatory variables measure the factors
that explain the behavior or outcome.2  The letter X is used often as mathematical
shorthand for a generic explanatory variable.  For now, assume that the dependent
variable is explained by just one explanatory variable.

f  translates education into hourly wages.  To understand why wages differ across
people, one needs to know how education differs across people and the numerical
relationship between wages and education, f .  Because f  is a function, it can be
described by a formula.  By far, the most popular is the linear function, whose formula is

  Y = β1 + β2 X . (2)

β2  is the slope and β1  the intercept.  Technically, β1  and β2  are population parameters.3
Parameters are numbers that characterize the numerical relationship between the
dependent variable (the behavior to be explained) and the explanatory variable (the factor
that explains behavior) for the entire statistical population.

In the earnings example,

Wage = β1 +β2Education . (3)

β2 , the slope, shows how the hourly wage changes when education changes:

β2 =
∆Wage

∆Education
. (4)

If education were to rise by one year, the hourly wage would rise by β2 .  Because Wage
is measured in dollars per hour, β2  is measured in dollars per hour as well.   For example,
β2  might be a number like 1.05.  If so, then an additional year of education would raise
wages by $1.05/hour.

β1 , the intercept, tells how much someone with no education would earn per hour.
Or, what someone with no brains and all brawn would get.  In some sense, this is the base
                                                
1  The terms "explained by," "accounted for by," and "a function of," may be interchanged with
"determined by."
2  The terms independent variable and regressor are used interchangeably with explanatory variable.
3  They are also known as coefficients.
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wage in the economy.  For example, β1  might be a number like 0.50, or 50 cents per
hour.  This is somewhat difficult to conceptualize, because virtually every worker in the
American economy has had some formal education.

2.  Random Variation

There are two ways that wages vary.  First, across education categories, people
with higher education have higher wages.  Second, within education categories, people
with the same level of education are paid differently.  The linear relationship between
wages and education

Wage = β1 +β2Education , (5)

accounts for the first type of variation, but not the second.  For example, the relationship
says all individuals with a high school diploma (i.e., Education = 12 ) earn

β1 + β2 ?12

dollars per hour.  If β1 = 0.50  and β2 =1.05 , then the expected wage for someone with a
high school diploma would be

β1 + β2 ?12 = 0.50+1.05 ?12 = 13.10 ,

or $13.10 per hour.  In reality, however, some are paid more than others.  Many factors
could account for this second type of variation, such as differences in work experience,
industry, occupation, unionization, gender, race, etc.   In addition, wages might differ for
purely random reasons.

To reflect randomness, an additional term, u, is added:

Wage = β1 + β2Education + u (6)

This new relationship is true for everyone in the population.  As a notational
convenience, statisticians use the subscript letter i to index each individual in the
population.4  Hence, the relationship often is written formally as

Wagei = β1 +β 2Educationi + ui (7)

This equation is known as a statistical or econometric model of the determinants of
wages.   It is a complete description of the hourly wage for each individual in the
population.  It implies that the dependent variable is a function of the explanatory
variable, the unknown population parameters, and randomness.  u  is referred to as the
disturbance term or error term.  Generically, this relationship can be written as

Yi = β1 +β2 Xi + ui . (8)

Technically, u  is a random variable.  As such, it has an average (or expected)
value and a variance.  Two assumptions are made about u .  First, u  can be positive or
negative, but its average value is zero.  For a given education level, some individuals will
have randomly higher wages and others randomly lower wages.  Simply, think of it as

                                                
4  If there are n individuals in the population, i is an integer number that runs from 1 to n.
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good luck or bad luck.  In layman's terms, a zero average says that even though there is
some randomness in wages, this washes out in the population as a whole.  On average,
there is neither good nor bad luck in the population.  Second, u  has a variance that is
constant across subgroups of the population.  This says that the random variation in
wages is the same regardless of whether you consider high school dropouts or Ph.D.'s.

One implication of our statistical model is that the wage can be broken into two
parts.  The first is the average wage for someone with that level of education:

β1 + β2Educationi .

This is sometimes referred to as the systematic part of the hourly wage, because, quite
obviously, it depends systematically on education!  The second is a random component
or luck:

ui .

For a generic model, Yi = β1 +β2 Xi + ui ,

β1 + β2 Xi

is the systematic part and

ui

the random part of the dependent variable, respectively.

3.  The Population Regression Line

The two parts of the hourly wage can be illustrated graphically as well.  Figure 1
is a scatter plot of hourly wages and education for a population of workers.  The hourly
wage (dependent variable) is measured along the vertical axis and education (explanatory
variable) along the horizontal axis.  In Figure 2, the upward-sloping line labeled

Average  Wage =β1 + β2 Education (9)

is the population regression line.5   Equation (9) is known as the population regression
equation.  It shows the average (or expected) value of the hourly wage for each value of
education.  For all workers in the population with a high school diploma, the average
wage is

β1 + β2 ?12 . 

However, any specific worker with a high school diploma is likely to have a
different hourly wage.  For example, for worker A, the hourly wage is greater than the
average.  In fact, the vertical distance between any point and the population regression
line, e.g.,

Worker A ' s Wage - Average Wage ,

                                                
5  This is sometimes referred to as the true regression line.
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is the value of the disturbance term, u, for that observation.  That is, the disturbance term
for worker A is

uWorker A = Worker A ' s Wage - Average Wage . (10)

This is shown in Figure 3.  The disturbance term is the random part of the hourly wage.
For some workers with high school diplomas, it is positive (Worker A) and for others, it
is negative (Worker B).

4.  The Sample Regression Line

In principle, if the researcher could obtain information on wages and education for
every worker in the population, the values ofβ1  and β2  could be determined.  Then the
population regression line would tell everything needed about the simple relationship
between wages and education.  However, this is usually not the case because most
statistical populations are so large that it is prohibitively costly to gather information for
every unit.  This means that the values of the parameters are unknown.  Consequently,
researchers rely on random samples.  These samples are used to estimate the unknown
values of the parameters β1  and β2  and make inferences about the population as a whole.

To reduce any confusion in what follows, clear notational distinctions are drawn
between the population and the sample.  All population parameters will be written as
Greek letters, e.g., β1  and β2 .  All estimates based on a sample will be denoted by a carat

or "hat," ^ , above the term.  For example, the estimate of β1  is denoted as ˆ β 1 .  The

estimate of β2  is denoted as ˆ β 2 .  In addition, all sample observations will be indexed by
the letter j .  j  is an integer number that runs from 1 to N.  All population observations
will be indexed by the letter i .

Figure 4 is a scatter plot of hourly wages and education for a random sample of
workers from the population shown in Figure 1.   The line through the plot in Figure 5 is
a sample regression line.  It is labeled

Predicted  Wage =  ̂β 1 +  ̂β 2Education . (10)

It has an intercept, ˆ β 1 , and a slope,  ˆ β 2  (note the hats!).  The sample regression line
shows the hourly wage one would predict using the sample if given a level of education

and the choice of estimates, ˆ β 1  and ˆ β 2 .  For example, all sample observations with a high
school diploma have a predicted wage of

Predicted  Wage High School =  ̂β 1 +  ̂β 2 ?12 .

The predicted value of a variable is denoted with a "hat. "  Thus, the predicted value of
the hourly wage,  ̂W age , for someone with a high school diploma is written typically as

 ̂W ageHigh  School =  ̂β 1 +  ̂β 2 ?12 .

Likewise, all sample observations with a Bachelor's degree have an predicted wage of
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 ̂W ageBachelor ' s Degree =  ̂β 1 +  ̂β 2 ?16 .

However, any specific sample observation with a high school diploma is likely to
have an hourly wage different than the predicted hourly wage for their education level.
In fact, the vertical distance between any point and the sample regression line is known as
the residual, ˆ u , for that observation.  For worker A, the residual is

 ̂u Worker A = Worker A ' s Wage - Predicted Wage . (11)

Using the definition of the predicted wage,

 ̂u Worker A = Worker A ' s Wage -  ̂β 1 -  ̂β 2 ?(Worker A ' s Education Level ) (12)

It is important to note that once the parameter estimates are chosen and a sample
regression line is drawn, each observation in the sample has a residual.  That is, for an
arbitrary sample observation,

 ̂u j = Wage j −  ̂β 1 −  ̂β 2 Education j .

For a generic model, Yi = β1 +β2 Xi + ui , the residual for the j th sample observation is

 ̂u j = Yj −  ̂Y j =Y j −  ̂β 1 −  ̂β 2X j .

The residual can be interpreted in a number of ways, all complementary.  First,
it is the difference between the actual and average value of the dependent variable.
Second, because it measures how the actual differs from the average, the residual is often
thought of as an error.6   Third, as the name suggests, the residual is the part of the
dependent variable left unexplained by the explanatory variable.  It is the leftover after
the explanatory variable has done all of the explaining it can.  In fact, each sample value
of the dependent variable can be decomposed into two parts: one explained and the other
unexplained.  If

Wage j =  ̂β 1 +  ̂β 2Education j +  ̂u j ,

the explained part is

 ̂β 1 +  ̂β 2Education j ,

and the unexplained part is

ˆ u j .

This is an extremely important interpretation.  We will return to it later in detail.

Finally, it should be noted that there is a direct correspondence between the
population and sample.  Each piece of the population equation has an analog in the
sample equation:
                                                
6  In fact, the terms "residual" and "error" often are used interchangeably.
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Population :  Wagei = β1 +β2 Educationi + ui

                                                    

Sample:         Wage j =  ̂β 1 +  ̂β 2 Education j +  ̂u j

The sample dependent variable corresponds to the population dependent variable.  The

sample explanatory variable corresponds to the population explanatory variable   ˆ β 1  is the

sample estimate of the population parameter β1 .   ˆ β 2  is the sample estimate of the
population parameter β2 .  Finally, in a loose sense,  ˆ u , the residual, can be thought of as
the sample analog to the population disturbance term u .

5.  The Least Squares Method

An estimator is a mathematical rule or method for calculating estimates of
unknown parameters.  The idea of estimation is really just to use sample information on
the dependent and explanatory variables to guess β1  and β2 .  This is probably best
illustrated graphically.  In Figure 2, the population regression line roughly went through
the middle of the scatter.  Therefore, to best estimate β1  and β2 , it seems you would want
to do the same in the sample: have a line run through the middle of the sample scatter.
The line in Figure 5 is one such line.  However, as shown in Figure 6, it should be
apparent that there are many possible lines that could run through the middle of the

scatter.  Three are shown along with their respective values of ˆ β 1  and ˆ β 2 .  Each line has a
slightly different slope and intercept, which means it is based on a different choice of

numbers for ˆ β 1  and ˆ β 2 , and each line generates a different set of residuals.  The question
is: Which line should be chosen?  This is the same as saying: Which numbers should we

choose for ˆ β 1  and ˆ β 2 ?

The least squares method of estimation says to choose the values of ˆ β 1  and ˆ β 2
that minimize the sum of the squared residuals.  Recall that residuals can be interpreted as
errors, i.e., how far the actual wage is from that predicted by the sample regression line

(which is governed by the choice of ˆ β 1  and ˆ β 2 ).  The square of a big error is much bigger

than the square of a small error.  So, the least squares method penalizes choices of ˆ β 1  and
ˆ β 2  that generate big errors or residuals.

Using some calculus and a lot of algebra, the mathematical formula for the least
squares estimators for β1  and β2  are
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 .  (13)

and
 ̂β 1 = Y −  ̂β 2 X , (14)

where Y is a generic dependent variable and X a generic explanatory variable.  Y  is the
sample mean of the dependent variable and X  is the sample mean of the explanatory
variable.

Least squares regression has a number of properties.  First, (14) implies

, (15)

which says the least squares sample regression line runs through the point with
coordinates equal to the sample means of the dependent and explanatory variables,
(Y ,X ) .  Second, the residuals,

ˆ u j = Yj − ˆ β 1 − ˆ β 2 Xj  , (16)

always sum to zero:

ˆ u j = 0
j =1

N

∑ . (17)

Of course, this implies the sample mean of the residuals is zero:

ˆ u j
j =1

N

∑
N

= 0 . (18)

Third, the residual and the explanatory variable are uncorrelated.  This is true for every
least squares estimation (or regression).   This must be true because the residuals are
defined as that part of the dependent variable, Y , that is left over after the explanatory
variable, X , and the intercept have done all they can to explain the dependent variable.

7.  Interpreting the Least Squares Estimators
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In the least squares formula for ˆ β 2 , the numerator and denominator contain sums
of products of the sample values for the dependent and explanatory variables and the
products of sums of these variables, respectively.  While mathematically elegant, this
depiction lacks intuition because it is not natural to think in terms of sums of products
and products of sums.  Luckily, with some algebra,  (13) can be rewritten as

ˆ β 2 =
C ˆ o v(Y, X)

Vˆ a r(X)
.   (19)

The numerator is the sample covariance between the dependent and explanatory
variables.  The denominator is the sample variance of the explanatory variable.

It is more intuitive to think in terms of covariances and variances.  For example,
the covariance is really just a measure of correlation between two variables.  In (19), it
measures how on average the dependent variable moves relative to its mean when the
explanatory variable moves relative to its mean.  That is, how the dependent and
explanatory variables move together, or "co-vary".  Because the value of the explanatory
variable itself varies in the sample, least squares says to normalize how the dependent
and explanatory variables co-vary relative to how the explanatory variable itself varies.
This estimates β2 !

For the wages and education example,  ˆ β 2  is

ˆ β 2 =
C ˆ o v(Wage, Education)

V ˆ a r(Education)
. (20)

This formula is so simple that you easily could calculate an estimate of β2  by hand.  The
sample covariance between the hourly wage and education is 9.982.  The sample variance
of education is 6.807.  Therefore, for our CPS sample,

ˆ β 2 =
9.982
6.807

=1.466 .

That is, the least squares estimate of β2  is 1.466.  Because

β2 =
∆Wage

∆Education
,

this estimate says that an additional year of education is associated with an additional
$1.47 in the hourly wage.  Or, someone with a high school diploma that went to one year
of college would see their hourly wage rise by $1.47 by getting that additional year of
schooling.  Relative to the sample mean wage of $14.77 per hour, this marginal effect
represents a 10% increase in the hourly wage for an additional year of schooling.

Likewise, ˆ β 1  can be calculated as

ˆ β 1 = Wage − ˆ β 2 Education .
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Wage  is the sample mean of the hourly wage, which is $14.77 per hour.   Education  is
the sample mean of the education level, which is 13.5 years of education.  Therefore, for
our CPS sample,

ˆ β 1 =14.77 −1.47 ⋅13.5 = −4.96 .

Because β1  tells how much someone with no education would earn per hour, we would
expect β1  to be positive or, at a minimum, zero.  But this estimate says that someone with
no education would earn negative $4.96 per hour.  So, someone with no brains and all
brawn would have to pay an employer 4.96 per hour to work!  This is counterintuitive.

One should be suspicious of this estimate for a number of reasons.  First, because
there are no sample observations with no education, the estimate is an extrapolation.
Second, the assumed linear relationship might not hold at lower education levels.  For
those with less than primary school education, the regression line may have a shallower
slope than the one that fits the rest of the data.   Finally, there may also be reporting (or
measurement) error associated with the low values of education.   Some of these
individuals report only six years of education.  They would be grade school drop-outs!
Because it is difficult not to have attended primary and middle school these days, these
individuals may have reported their education incorrectly during the CPS interview.   For
now, we will look the other way and just remind ourselves that -$4.96 is just an estimate,

and some estimates are better than others.  Later, we will return to our discussion of ˆ β 1
and show that the non-linearity between wages and education may be very important.

The complete regression results are shown in Table 4.1.  There are 1003 persons
in the sample.  The coefficient of variation, R2 , is 0.1708: about 17% of the variation in
hourly wages is due to variation in years of education across workers.  This is somewhat
lower than might be expected, given the presumed importance of education.  It means
that about 83% of wage variation is due to other factors, possibly some that were
measured by the CPS.7

A test of association between wages and education is performed using the t-test
for the slope parameter, β2 .   Here, t = 14.36 with an observed level of significance, or p-
value, of p<.0001. This means if there were no relationship between wages and
education, the chances of obtaining a slope estimate this large (or larger) are less than 1
in 10,000. Because this would be a rare event, we conclude there is strong evidence of a
positive relationship between education and wages.  In fact, we say the relationship
between wages and education is statistically significant.

The best single estimate for the true increase in average hourly wages for each
additional year of education is $1.47.  But because this is based on a random sample, and
different random samples would give different estimates, there is uncertainty associated
with the point estimate.  This uncertainty is reflected in the standard error, and, thus, in
the confidence interval.   An interval estimate, or a range of values where the true value
could lie, is computed based on the underlying variability of wages within each education
level and the size of the sample, and is called a confidence interval.   Given the standard
error of 0.10, the 95% confidence interval for the effect of an additional year of education
on the wage is ($1.27, $1.67).   The lower end of the interval is far enough from zero to
                                                
7  The regression output also gives other information.  For example, the root mean square error (RMSE)
and the Analysis of Variance (ANOVA) table.  These are often less useful for the practical interpretation of
the analysis.
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provide assurance that not only more education is associated with higher wages but that
wages rise by about $1.30 and $1.70 per hour for every additional year.

The parameter estimates can be used to construct the sample regression line,
which is shown in Figure 7.  It gives the predicted or fitted wage at each education level.
Figure 8 superimposes another line.  This curvy line runs through the point of mean
education for each single year of education.8  There is a remarkable concordance between
the fitted regression line and "mean wage line" at each education level.  In fact, tracking
mean wages is an important characteristic of regression analysis.

When mean wages show a linear trend, these two curves will be close, as between
9 and 18 years of education.  Only at very low and high levels of education do the lines
differ greatly.  Indeed, wages may be higher than predicted at the extremes.  One way to
account for this is to modify the initial model to reflect possible non-linearity in the
dependent variable and skewness in the distribution of disturbances for each education
level.  The most common method is to use a natural logarithm transformation of the
wage.

8.  Log Transformations

The plot of hourly wages against years of education (Figure 1) showed that within
each year of education, wages are not symmetrically distributed.  In fact, they were right-
skewed, so that for the same education level, a few people have very high wages but most
are lower than the average.  Log transforming hourly wages results in a plot where wages
are generally more symmetrically distributed within each education level.

To understand the consequences of the log transformation of wages,  first consider
the generic model

Yi = β1 +β2 Xi + ui .

Taking the derivative of both sides with respect to X  yields

β2 =
dY

dX
. (21)

β2  is interpreted as the change in the dependent variable for a change in the explanatory
variable.  This is true for any set of dependent and explanatory variables.

For the model

Wagei = β1 +β 2Educationi + ui , (22)

β2 =
dWage

dEducation
. (23)

That is, a one unit increase in educational attainment (which is one additional year)
would raise wages by  β2  dollars per hour.  But, for a second model, with a log
transformation of the dependent variable,

                                                
8  Technically, between years the line is smoothed according to a cubic spline.
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ln(Wagei ) = β1 +β2Educationi + ui , (24)

β2 =
d ln(Wage)
dEducation

,  (25)

because the dependent variable is ln(Wage) .  That is, an additional year of educational
attainment would raise the natural logarithm of the hourly wage by β2 .  This is an
awkward interpretation because most people do not think in terms of natural logs.
Fortunately, there is a more intuitive interpretation of β2  here.  First, apply the chain rule
to (25):

β2 =
d ln(Wage)

dWage
⋅

dWage

dEducation
.  (26)

For any variable z ,

d ln(z)

dz
=

1

z
. (27)

Therefore, (26) can be rewritten as

β2 =
1

Wage
⋅

dWage

dEducation
,  (28)

or,

β2 =

dWage
Wage

dEducation
(29)

The numerator can be interpreted as the percentage change in wages, i.e.,

dWage

Wage
=%∆Wage (30)

Therefore,

β2 =
%∆Wage

∆Education
(31)

That is, an additional year of educational attainment would raise the hourly wage by β2

percent.  Economists refer to this as the rate of return to an investment in an additional
year of education, or, the return to education.

INSERT THE eβ2 ≅ 1+ β2  DISCUSSION HERE.

Now, using the formula for the least squares estimator from (19),
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ˆ β 2 =
C ˆ o v(ln(Wage), Education)

V ˆ a r(Education)
. (32)

The sample covariance between the log hourly wage and education is 0.635.  The sample
variance of education is 6.807.  Therefore,

ˆ β 2 =
0.635
6.807

= 0.093 .

That is, the least squares estimate of β2  is 0.093.  Because

β2 =
%∆Wage

∆Education
,

this estimate says that an additional year of education is associated with a 9.3% increase
in the hourly wage.  So, the estimated return to a one-year investment in education yields
a return of 9.3%.

The complete regression results are shown in Table 4.2.  There are still 1003
persons in the sample.  Now, the coefficient of variation, R2 , is 0.1620: about 16% of the
variation in hourly wages is due to variation in years of education across workers.  Much

of the variation in the log wage is unexplained.  Expressed as an hourly wage, ˆ β 1  =
1.2599 implies that a worker with no education earns

e
ˆ β 1 = e1.2599 = 3.52 ,

or $3.52 per hour.  This is a much more sensible estimate of the base wage in the
economy that -$4.96.

A test of association between wages and education is performed using a t-test.
Because the natural logarithm is a monotone function, if wages increase according to
years of education, the same will be true for log wages.  In this case, t = 13.91 (p<.0001).
There is strong evidence of a positive relationship between education and log wages, and,
therefore, also between education and wages.   Often, the t-statistic and observed level of
significance are not the same on the two scales, because the data may be more dispersed
on one scale; for these data, they happen to be similar.  For scales that are monotone
transformations of each other, the direction of effect, either positive or negative, is the
same, so that inference made on one scale can be applied to the other.

The parameter estimate for education is 0.0933 with a 95% confidence interval of
(0.0801, 0.1064).   These point and interval estimates can be converted to effects on the
original scale by using the exponential function.  Average hourly wages increase by a
factor of exp(0.0933)=1.10 or 10% for each additional year of education.   A 95%
confidence interval for this figure is obtained by exponentiating the upper and lower
bounds of the 95% confidence interval on the log scale: (exp(0.0801), exp(0.1064)) =
(1.08, 1.11).  This gives the best interval estimate for the increase in the hourly wages for
every additional year of education based on the estimation using the log transformation.
The lower bound is far enough from 1.00 (1.00=exp(0), or, no return) that we not only
believe there is a positive effect of education, but this effect is on the order of 8 to 11%
increase in wages for every additional year of schooling.



13

The effect on wages of four years of college or four years of high school can also
be analyzed. Average wages increase by a factor of about exp(4*0.0933)= 1.45, with a
95% confidence interval of (exp(4*0.0801), exp(4*0.1064))= (1.38, 1.53) for every
additional four years of education. This means that high school or college graduates'
wages are an average of 45% (38%, 53%) higher than they would be without this
education.

The parameter estimates can be used to construct the sample regression line,
which is shown in Figure 9.  It gives the predicted or fitted  log wage at each education
level.  Figure 9 superimposes the curvy line that runs through the point of mean education
for each single year of education.9  Again, there is a remarkable concordance between the
fitted regression line and "mean wage line" at each education level.   At very low and
high levels of education, the lines still differ.

Because most people do not think in terms of "log dollars," it is easier to
reinterpret the estimates in dollars per hour.  The sample regression line implied by the
log-linear model, but expressed in terms of the hourly wage and education, is shown in
Figure 10.  It gives the predicted or fitted  hourly wage at each education level.  Its most
important feature is that is curved.  This is because a linear relationship between the log
wage and education is a non-linear relationship between the wage and education.  Indeed,
the slope of this curve is steeper for higher levels of education.  This is because a 9.3%
increase in wages is a larger absolute jump when wages are $20 per hour than $10 per
hour.   For comparison, Figure 10 also superimposes the sample regression line from the
linear model discussed above.

                                                
9  Technically, between years the line is smoothed according to a cubic spline.


