
Realizing abstract simplicial complexes with specified edge lengths

Matthew Ellison
matthew.ellison.gr@dartmouth.edu

Dartmouth College

This is a preprint in progress, last edited August 8th, 2023.

Please contact me with any suggestions or typos.

Abstract

For finite abstract simplicial complex Σ, initial realization α in Ed, and desired edge lengths L, we
give practical sufficient conditions for the existence of a non-self-intersecting perturbation of α realizing the
lengths L. We provide code to verify these conditions by computer and optionally assist in the creation of
an initial realization from abstract simplicial data. Applications include proving the existence of a planar
embedding of a graph with specified edge lengths or proving the existence of polyhedra (or higher-dimensional
polytopes) with specified edge lengths.

1 Introduction

Consider the problem of whether a finite abstract simplicial complex1 may be realized in Ed with flat faces,
no self-intersection, and prescribed edge lengths. One resolution is to assign coordinates to the vertices so the
edge lengths are exactly as prescribed. All faces are then fixed, and one may verify the realization is non-self-
intersecting. More generally, any rigorous exact geometric construction resolves the problem.

We pursue a different approach. Suppose we have an assignment of coordinates to the polytope vertices so the
edge lengths are approximately correct. Such an assignment might be produced by computer simulation, or,
perhaps, approximate physical construction and measurement. If one proved the existence of a perturbed assign-
ment where (i) the edge lengths are exactly correct and (ii) the perturbated realization is non-self-intersecting,
then the problem is also resolved.

In this paper, we prove practical sufficient conditions for such a perturbation to exist. We also provide code, in
the form of a Python3 package, which may be used to prove existence from abstract simplicial data, desired edge
lenghts, and an approximate realization. The code can optionally assist in creating the approximate realization.
See Section 5 for example applications.

Related results include Steinitz’s Theorem ([7][3][9]), which gives necessary and sufficient conditions for a graph
to be the net of a three-dimensional convex polyhedron; recent work by Abrahamsen at al ([1]) which establishes
the NP-hardness of deciding whether a k-dimensional abstract simplicial complex admits a geometric embedding
in Rd for d ≥ 3 and k = d − 1, d; and work by Cabello, Demaine, and Rote ([6]) on the planar embedding of
graphs with specified edge lengths.

2 Perturbing to obtain edge lengths

In this section we provide sufficient conditions for the existence of a perturbed realization — possibly self-
intersecting — with edge lengths exactly correct. We will address self-intersection in the following section.

Let Σ be an finite abstract simplicial complex with vertex set V and edge set E. Higher dimensional structure
is not relevant in this section. Consider the map l2 : Rd|V | → R|E|, which takes coordinates of vertices to square
lengths of edges.2 We choose square lengths of edges because we will be taking derivatives shortly.

1Recall an abstract simplicial complex is a set S of vertices together with a set of subsets ∆ corresponding to edges, triangular
faces, tetrahedral volumes, etc. A simplex must contain all its faces, so ∆ must be closed under subsets.

2Fixing, once and for all, an ordering of the vertex components and edges.

1

Let α ∈ Rd|V | denote our initial approximate realization, and let l2∗ ∈ R|E| denote our desired square edge
lengths for Σ.

In this language, we want to find a point x near α such that l2(x) = l2∗. Our approach will be to find sufficient
conditions for a ball around α to surject, under l2, onto a neighborhood of l2(α) containing l2∗.

We begin by analyzing the derivatives of l2.

Lemma 1. Let x, y be two points in Rd. Then

∂

∂x
||x− y||2 = 2(x− y).

Proof.

∂

∂x
||x− y||2 =

∂

∂x
[(x− y)T (x− y)] =

∂

∂x
xTx− ∂

∂x
xT y − ∂

∂x
yTx = 2x− y − y.

To unpack this compact notation, let xi and yi denote the ith components of x and y. We then have
∂

∂xi
||x− y||2 = 2(xi − yi).

Lemma 1 makes it straightforward to compute the Jacobian of l2. For the second derivatives, we may apply
the following result:

Lemma 2. Let x, y be two points in Rd, and let I be the d× d identity matrix. Then

∂2

∂x∂y
||x− y||2 =

∂2

∂y∂x
||x− y||2 = −2I,

∂2

∂x2
||x− y||2 =

∂2

∂y2
||x− y||2 = 2I.

.

An example unpacking is ∂2

∂xi∂yj
||x− y||2 = (−2I)ij = −2δij .

The higher derivatives of l2 vanish. Consider the Taylor expansion of l2 about α. For a perturbation ϵ, which
perturbs the ith vertex by ϵi, we have

l2(α+ ϵ)− l2(α) = Dl2(α)ϵ+
1

2

∑
ith,jth vertex
adjacent, i<j

[
2ϵTi ϵi − 4ϵTi ϵj + 2ϵTj ϵj

]
eij . (1)

Here eij denotes the unit vector corresponding to the respective edge.

In Equation 1, we are interested in lower-bounding the left hand side’s magnitude. Preparing to apply the
reverse triangle inequality, we note the following.

Let σmin denote the smallest singular value of Dl2(α).

||Dl2(α)ϵ|| ≥ σmin||ϵ||∣∣∣∣∣∣
∣∣∣∣∣∣12

∑
(i,j)∈Edge(T)

[
2ϵTi ϵi − 4ϵTi ϵj + 2ϵTj ϵj

]
e(i,j)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

2

√
|E|

(
8||ϵ||2

)
.

Thus, for ϵ sufficiently small that σmin ≥ 4
√
|E|||ϵ||, we have

||f(α+ ϵ)− f(α)|| ≥ σmin||ϵ|| − 4
√
|E|||ϵ||2.

With a little topological work, we can now push this toward the kind of result we want.

Lemma 3. Suppose d|V | ≥ |E|, σmin > 0 (so we are locally surjective), and fix δ sufficiently small that
σmin > 4

√
|E| δ. Then the image under l2 of the closed ball of radius σmin

4
√

|E|
around α takes every value in the

ball of radius σminδ − 4
√

|E|δ2 centered at l2(α).

2

Proof. We will apply a sequence of reductions to l2 until a missing value in the desired ball yields a contradiction.
This contradiction will be by the fact that there is no retraction of the ball onto its boundary.
First we perturb away the contribution of the quadratic term on the boundary and shift to the origin.
Let η : [0, σmin

4
√

|E|
] → [0, 1] be a smooth bump-style function which is 1 on [0, δ] and smoothly decreases to 0 at

σmin

4
√
E
. Now define f by

f(ϵ) = Dl2(α)ϵ+
η(||ϵ||)

2

∑
ith,jth vertex
adjacent, i<j

[
2ϵTi ϵi − 4ϵTi ϵj + 2ϵTj ϵj

]
eij .

By our bounding work above, points in the spherical shell between radius δ and σmin

4
√
E

cannot take values in the

desired ball, either before or after applying η. The desired statement then reduces to showing that the image
under f of the closed ball of radius σmin

4
√

|E|
around 0 takes every value in the ball of radius σminδ − 4

√
|E|δ2

about 0.
Next we restrict f to a same-radius sub-ball of the domain ball of the same dimension as the codomain, in such
a way that the restricted Jacobian is invertible at 0. We can do this because the original Jacobian is full rank
by assumption. Call this restricted function g, so that

g(ϵ) = Dg(0)ϵ+
η(||ϵ||)

2

∑
ith,jth vertex
adjacent, i<j

[
2ϵTi ϵi − 4ϵTi ϵj + 2ϵTj ϵj

]
eij .

It now suffices to establish the (stronger) statement that the image under g of the (now lower-dimensional)
closed ball of radius σmin

4
√

|E|
around 0 takes every value in the ball of radius σminδ − 4

√
|E|δ2 about 0.

We now define a final function h which is simply g multiplied on the left by Dg(0)−1:

h(ϵ) = ϵ+Dg(0)−1 η(||ϵ||)
2

∑
ith,jth vertex
adjacent, i<j

[
2ϵTi ϵi − 4ϵTi ϵj + 2ϵTj ϵj

]
eij .

To finish, it will suffice to show that the image under h of the closed ball of radius σmin

4
√

|E|
about 0 contains

each point in this ball’s interior. But suppose the image did not contain some point p, then, since h fixes
the boundary, we may obtain a contradiction in the same way as the typical proof of Brauer’s Fixed Point
theorem.

Maximizing the radius of the image ball over δ we then obtain our section’s main result.

Theorem 1. Let Σ be an abstract simplicial complex with vertex set V and edge set E, which we wish to embed
in Ed. Fix an ordering of the vertex coordinates and edges, and let l2 : Rd|V | → R|E| be the map taking an
assignment of vertex coordinates to square edge lengths. Let α ∈ Rd|V | be an initial embedding and let l2∗ ∈ R|E|

be the desired square edge lengths. Then the following conditions are sufficient for the existence of a realization
with the desired edge lengths — potentially self-intersecting:

• d|V | ≥ |E|

• σmin > 0, where σmin is the smallest singular value of Dl2(α)

• ρ < σ2
min/(16

√
|E|), where ρ = ||l2∗ − l2(α)||.

.

Recall that Lemma 1 may be used to easily compute Dl2(α). We conclude this section with an observation
which will be useful later.

Lemma 4. Suppose the conditions of Theorem 1 are satisfied. Then we have a realization α∗ ∈ Rd|E| with the
desired edge lengths such that

||α∗ − α|| ≤
σmin −

√
σ2
min − 16ρ

√
|E|

8
√
|E|

.

Proof. By Lemma 3, we need only move a distance δ such that

σmin > 4
√
|E|δ and ρ < σminδ − 4

√
|E|δ2.

3

Focusing on the second condition, this will be satisfied between the roots of 4
√

|E|δ2 − σminδ + ρ = 0, which
occur at

δ =
σmin ±

√
σ2
min − 16ρ

√
|E|

8
√

|E|
.

Note that the discriminant is positive by the third condition of Theorem 1, and that both roots are positive.
Note also that the σmin > 4

√
|E| condition is satisfied throughout the whole open interval between the roots.

Thus we can take our δ to be any value in the open interval between the roots, and taking the infimum gives
our result.

3 Enforcing non-self-intersection

We now extend Theorem 1 to give sufficient conditions for the existence of a non-self-intersecting realization
with the desired edge lengths. This is not so difficult, although implementing the computations takes some
work (see Appendix C).

First we formalize self-intersection. Let Σ be an abstract simplicial complex. Two simplices σ1 and σ2 of Σ
are non-adjacent if their vertex sets are disjoint. For a realization α of Σ in Ed, let dα(σ1, σ2) be the minimum
distance between a point from each of the realizations of σ1 and σ2.
Define the collision distance of realization α to be

CDα(Σ) = min
σ1,σ2∈Σ

non-adjacent

dα(σ1, σ2).

A realization α of Σ is self-intersecting exactly when CDα(Σ) = 0.3

Lemma 5. Suppose vertex v is moved, in realization α, to v∗, yielding realization α∗. Then

CDα∗(Σ) ≥ CDα(Σ)− ||v∗ − v||.

Briefly, moving a vertex by δ can at most decrease collision distance by δ.

Proof. It suffices to show, for any σ1, σ2 non-adjcent in Σ, that

dα∗(σ1, σ2) ≥ dα(σ1, σ2)− ||v∗ − v||.

Let m,n be the respective dimensions of σ1, σ2. The case of interest is when exactly one contains v (if neither
do the claim is clear and it can’t be both since they are non-adjacent). Without loss of generality, suppose σ1

contains v with initial vertex coordinates v, v2, ..., vm+1 and let σ2 have coordinates w1, ..., wn+1.

Let [α1 : ... : αm+1] and [β1 : ... : βn+1] be the barycentric coordinates of a closest pair in α∗. Expanding out,
we then have

dα∗(σ1, σ2) + α1||v∗ − v|| =

∣∣∣∣∣
∣∣∣∣∣α1v

∗
1 +

∑
i>1

αivi −
∑
i

βiwi

∣∣∣∣∣
∣∣∣∣∣+ ||α1(v1 − v∗1)||

≥

∣∣∣∣∣
∣∣∣∣∣α1v1 +

∑
i>1

αivi −
∑
i

βiwi

∣∣∣∣∣
∣∣∣∣∣

≥ dα(σ1, σ2).

Thus

dα∗(σ1, σ2) ≥ dα(σ1, σ2)− α1||v∗ − v||
≥ dα(σ1, σ2)− ||v∗ − v||.

Lemma 6. Let Σ be an abstract simplicial complex with vertex set V and edge set E. Fixing an ordering
of vertex coordinates, let α ∈ Rd|V | be a non-self-intersecting realization in Ed. Let α∗ ∈ Rd|V | be another
realization. If

||α∗ − α|| < 1√
|V |

CDα(Σ),

then α∗ is also non-self-intersecting.
3It might be more pleasing, though not needed, to define the collision distance for a self-intersecting realization α to be minus

the minimum distance, in some sense, to a non-self-intersecting realization α∗.

4

Proof. Let ϵ = ||α∗ − α||, and let ϵi be the displacement of the ith vertex from α to α∗. If we consider moving
the vertices one by one, we see

CDα∗(Σ) ≥ CDα(Σ)−
∑

||ϵi||,

and so we are safe if

CDα(Σ) >
∑

||ϵi||.

We then obtain our result by weakening via following inequality:∑
||ϵi|| ≤

√
V ||ϵ||.

Combining this result with Theorem 1 and Lemma 4, we obtain our desired existence test.

Theorem 2. Let Σ be an abstract simplicial complex with vertex set V and edge set E, which we wish to
embed in Ed. Fix an ordering of the vertex coordinates and edges, and let l2 : Rd|V | → R|E| be the map taking
an assignment of vertex coordinates to square edge lengths. Let α ∈ Rd|V | be an initial non-self-intersecting
realization and let l2∗ ∈ R|E| be the desired square edge lengths. Then the following conditions are sufficient for
the existence of a realization with the desired edge lengths and no self-intersections:

• d|V | ≥ |E|

• σmin > 0, where σmin is the smallest singular value of Dl2(α)

• ρ < σ2
min/(16

√
|E|), where ρ = ||l2∗ − l2(α)||

•
σmin−

√
σ2
min−16ρ

√
|E|

8
√

|E|
< 1√

|V |
CDα(Σ).

4 Proving existence by computer

Suppose we have an abstract simplicial complex Σ, and we wish to prove the existence of a non-self-intersecting
realization in Ed with desired square edge lengths l2∗. For example, we might wish to prove the existence of the
regular icosahedron in the usual three space. It is tempting to apply Theorem 2 by computer in the following
way:

1. Obtain a realization α of Σ in Ed which is non-intersecting (perhaps not rigorously proven) and with edge
lengths reasonably correct.

2. Prove α is non-self-intersecting.

3. Prove α satisfies the 4 inequalities of Theorem 2.

This is the approach followed by our code. In this section we describe in more detail how the steps may be
rigorously carried out by computer. Any one of the verification steps may fail along the way, in which case the
proof is aborted (or one modifies the described process to salvage it), but for cleaner exposition we describe the
process as if each stage will be successful.

We will suppose the square lengths in l2∗ are rational for this section. This is what our software supports, but
this discussion (and the software) would generalize to any countable ordered subfield of R with a little work.

4.1 Initial realization

The coordinates of an approximate realization may be directly input by the user. Alternatively, we have found
it practical to generate coordinates by a physics-inspired simulation:

1. Randomly initialize the vertex coordinates.

2. Iterate time steps where the vertices move according to repulsive forces between all vertices and spring
forces between vertices joined by an edge (with spring length desired length).

3. Iterate more time steps with just the spring forces.

4. Start again if the resulting realization is heuristically self-intersecting.

5. Approximate the coordinates by fractions so we have an exact representation the computer can work with
for the remaining steps.

5

4.2 Proving non-self-intersection

At this point we have an approximate realization α with rational coordinates.

To verify it is non-self-intersecting, it suffices to check that each pair of non-adjacent simplices in Σ is non-self-
intersecting.4 This in turn may be accomplished by computing dα(σ1, σ2) for each such pair as described in
Appendix C.

4.2 Checking the inequalities

The final step is to attempt to prove it satisfies the 4 inequalities of Theorem 2.

It is clear how to test the first inequality, d|V | ≥ |E|.

For the second inequality, σmin > 0, we may apply the process of Appendix A to obtain a good rational interval
[σl, σu] containing σmin and then check σl > 0.

For the third inequality,
ρ < σ2

min/(16
√
|E|), where ρ = ||l2∗ − l2(α)||,

we can first compute rational intervals around ρ and
√
|E| using the process of Appendix B, and then, together

with our interval [σl, σu] from before, verify the inequality with interval arithmetic.

Finally, we have the fourth inequality:

σmin −
√
σ2
min − 16ρ

√
|E|

8
√
|E|

<
1√
|V |

CDα(Σ).

To verify this, we can first obtain rational intervals around
√
|V | and CDα(Σ). Note that we can find (CDα(Σ))

2

exactly using the process of Appendix C. Then, together with our intervals around σmin, ρ, and
√

|E| from
before, we can do interval arithmetic on the left and right hand sides to verify the inequality.

5 Example proofs using the supplemental code

The code is available as a Python 3 package called shape-existence. To use it, you can first install Python 3
and then run the package install command from your terminal:

pip install shape-existence

The following examples give code which would be entered into a file saved with extension .py. To run the .py
file, one could navigate to its folder in terminal and run python3 [filename], or, likely, just double click on
the file.

5.1 30-60-90 triangle

We prove the existence of a π/6− π/3− π/2 triangle with side lengths 1, 1
2 , and

√
3
2 .

from shape_existence.complexes_and_proofs import AbstractSimplicialComplex, Fraction

ASC = AbstractSimplicialComplex

triangle = ASC(mode = "maximal_simplices", data = [["a", "b"], ["b", "c"], ["c", "a"]])

square_sides= {("a", "b") : 1, ("b", "c") : Fraction(1,4), ("c", "a") : Fraction(3,4)}

triangle_realized = triangle.heuristic_embed(dim = 2, desired_sq_lengths = square_sides, final_round_digits = 8)

triangle_realized.save_as_obj("triangle_30_60_90.obj", "./obj_files/")

triangle_realized.prove_existence(desired_sq_lengths = square_sides, verbose = True)

Running this code yields the following text output (because verbose was set to True in the call to prove existence):

Attempting to prove existence

Starting realization:

Abstract data:

mode: maximal_simplices

data: [[’a’, ’b’], [’b’, ’c’], [’c’, ’a’]]

Coordinate Data:

b : [3914567 / 6250000, 63520223 / 100000000]

a : [27779707 / 50000000, -226433 / 625000]

c : [104057459 / 100000000, 35519863 / 100000000]

4And we can save time by only checking that maximal pairs of non-adjacent simplices are non-self-intersecting.

6

Desired square lengths:

(’a’, ’b’) : 1

(’b’, ’c’) : 1 / 4

(’c’, ’a’) : 3 / 4

Checking inequality 1:

d = 2

|V| = 3

|E| = 3

Success: d|V| >= |E|

Checking self-intersection:

Square collision distance = 18749999713556450281734401664681 / 99999999862479730000000000000000

Collision distance in [43301269 / 100000000, 4330127 / 10000000] ~ [0.43301, 0.43301]

Success: starting realization non-self-intersecting

Checking inequality 2:

sigma_min in [2651 / 2000, 13257 / 10000] ~ [1.3255, 1.3257]

Success: sigma_min > 0

Checking inequality 3:

rho_squared = 6139541520423783 / 50000000000000000000000000000000

rho in [6925689 / 625000000000000, 13175689 / 625000000000000] ~ [0.0, 0.0]

sigma_min ^ 2 / (16 * E ^ .5) in [175695025 / 2771281296, 175748049 / 2771281280] ~ [0.0634, 0.06342]

Success: rho < sigma_min ^ 2 / (16 * E ^ .5)

Checking inequality 4:

LHS NUM := sigma_min - [sigma_min ^ 2 - 16 * rho * |E| ^ .5] ^ .5 in [-19989 / 100000000, 20023 / 100000000] ~ [-0.0002, 0.0002]

LHS DEN := 8 * |E| ^ .5 in [4330127 / 312500, 173205081 / 12500000] ~ [13.85641, 13.85641]

LHS := (LHS NUM) / (LHS DEN) in [-19989 / 1385640640, 20023 / 1385640640] ~ [-1e-05, 1e-05]

CD / |V| ^ .5 in [43301269 / 173205081, 1 / 4] ~ [0.25, 0.25]

Success: LHS < CD / |V| ^ .5

Success: existence proven

(187489 / 999956, ([0, 0], [54125 / 249989, 187489 / 499978]))

The above proof log documents a successful proof of existence using Theorem 2.
Notes on the code:

• We began by creating our triangle as an abstract simplicial complex using the AbstractSimplicialComplex
class (renamed ASC). We used mode “maximal simplices” to specify the structure, where the maximal sim-
plices are 1-simplices, the three sides of the triangle.

• We then specified our desired square side lengths, and used them to create a heuristic embedding of
the triangle in two dimensions using the heuristic embed function (under the hood this is doing a
physics-inspired simulation like described above). We specified the square edge lengths using the provided
package-provided Fraction class.

• The heuristic embedding procedure works in floating point numbers, and then at the end converts to
Fractions to yield an exact realization (which hopefully approximates the desired edge lengths). The
final round digits parameter specifies how many floating point digits are preserved in this final con-
version.

• We used the package-provided save as obj function, which takes in the type RealizedSimplicialComplex
(what heuristic embed outputs) and saves a 3D model in the obj format.5 These files might help con-
vince you that the heuristic embedding is reasonable. We previously created a folder called obj files in
the directory where the code was run.

Notes on the proof log, which is hopefully self-explanatory:

• The proof log begins by describing the abstract simplicial complex, starting approximate realization, and
desired square edge lengths.

• The computed collision distance for the approximate realization is very close to
√
3/4, the shortest altitude

of the desired triangle.

5.2 Icosahedron

We can follow the same process to prove the existence of the icosahedron.

from shape_existence.complexes_and_proofs import AbstractSimplicialComplex, Fraction

ASC = AbstractSimplicialComplex

icosahedron = ASC(mode = "maximal_simplices",

data = [["t", "a1", "a2"], ["t", "a2", "a3"], ["t", "a3", "a4"], ["t", "a4", "a5"], ["t", "a5", "a1"],

["a1", "a2", "b1"], ["a2", "a3", "b2"], ["a3", "a4", "b3"], ["a4", "a5", "b4"], ["a5", "a1", "b5"],

["b1", "b2", "a2"], ["b2", "b3", "a3"], ["b3", "b4", "a4"], ["b4", "b5", "a5"], ["b5", "b1", "a1"],

["b", "b1", "b2"], ["b", "b2", "b3"], ["b", "b3", "b4"], ["b", "b4", "b5"], ["b", "b5", "b1"]])

icosahedron_realized = icosahedron.heuristic_embed(dim = 3, desired_sq_lengths = {"default" : 1}, final_round_digits = 9)

icosahedron_realized.save_as_obj("icosahedron.obj", "./obj_files/")

icosahedron_realized.prove_existence(desired_sq_lengths = {"default" : Fraction(1)}, verbose = True)

And here is the resulting successful proof log:

5These files can, in 2023 at least, be viewed and rotated on Macs with just the space-bar ‘preview’.

7

Attempting to prove existence

Starting realization:

Abstract data:

mode: maximal_simplices

data: [[’t’, ’a1’, ’a2’], [’t’, ’a2’, ’a3’], [’t’, ’a3’, ’a4’], [’t’, ’a4’, ’a5’], [’t’, ’a5’, ’a1’], [’a1’, ’a2’, ’b1’],

[’a2’, ’a3’, ’b2’], [’a3’, ’a4’, ’b3’], [’a4’, ’a5’, ’b4’], [’a5’, ’a1’, ’b5’], [’b1’, ’b2’, ’a2’], [’b2’, ’b3’, ’a3’],

[’b3’, ’b4’, ’a4’], [’b4’, ’b5’, ’a5’], [’b5’, ’b1’, ’a1’], [’b’, ’b1’, ’b2’], [’b’, ’b2’, ’b3’], [’b’, ’b3’, ’b4’],

[’b’, ’b4’, ’b5’], [’b’, ’b5’, ’b1’]]

Coordinate Data:

b3 : [78001449 / 250000000, 1442907833 / 1000000000, -9027 / 10000000]

a3 : [-43340621 / 200000000, 120056377 / 200000000, -103120161 / 1000000000]

b4 : [693725959 / 1000000000, 1458019437 / 1000000000, 9232517 / 10000000]

a1 : [794405291 / 1000000000, -156807867 / 1000000000, 908071661 / 1000000000]

a4 : [-223966263 / 1000000000, 43705607 / 40000000, 383621077 / 500000000]

a2 : [412685129 / 1000000000, -10744967 / 62500000, -16082739 / 1000000000]

b2 : [176369499 / 250000000, 661366989 / 1000000000, -485024109 / 1000000000]

t : [-80871507 / 500000000, 47311007 / 500000000, 378930187 / 500000000]

b1 : [166297169 / 125000000, 193459789 / 1000000000, 69963403 / 500000000]

a5 : [400933091 / 1000000000, 24989319 / 40000000, 139219307 / 100000000]

b : [634077051 / 500000000, 23829559 / 20000000, 74654293 / 500000000]

b5 : [1323114193 / 1000000000, 685818079 / 1000000000, 505144561 / 500000000]

Desired square lengths:

default : 1

Checking inequality 1:

d = 3

|V| = 12

|E| = 30

Success: d|V| >= |E|

Checking self-intersection:

Square collision distance = 62499999704038118952979912461140044476898687719549649 / 86372875554807236480463023424935793500000000000000000

Collision distance in [2126627 / 2500000, 85065081 / 100000000] ~ [0.85065, 0.85065]

Success: starting realization non-self-intersecting

Checking inequality 2:

sigma_min in [7653 / 5000, 3827 / 2500] ~ [1.5306, 1.5308]

Success: sigma_min > 0

Checking inequality 3:

rho_squared = 3928473408881149031 / 50000000000000000000000000000000000

rho in [443197101 / 50000000000000000, 943197101 / 50000000000000000] ~ [0.0, 0.0]

sigma_min ^ 2 / (16 * E ^ .5) in [6507601 / 243432248, 14645929 / 547722557] ~ [0.02673, 0.02674]

Success: rho < sigma_min ^ 2 / (16 * E ^ .5)

Checking inequality 4:

LHS NUM := sigma_min - [sigma_min ^ 2 - 16 * rho * |E| ^ .5] ^ .5 in [-799 / 4000000, 4011 / 20000000] ~ [-0.0002, 0.0002]

LHS DEN := 8 * |E| ^ .5 in [547722557 / 12500000, 273861279 / 6250000] ~ [43.8178, 43.8178]

LHS := (LHS NUM) / (LHS DEN) in [-19975 / 4381780456, 20055 / 4381780456] ~ [-0.0, 0.0]

CD / |V| ^ .5 in [42532540 / 173205081, 85065081 / 346410161] ~ [0.24556, 0.24556]

Success: LHS < CD / |V| ^ .5

Success: existence proven

Code notes:

• In specifying our desired square lengths we used the "default" keyword to say that every square edge
length not explicitly given (all of them in this case) should have desired square value 1.

Proof log notes:

• The collision distance for the starting realization ≈ .8506 is correct, consider disjoint edges on adjacent
faces.

Here is a screenshot of the 3D model produced by the call to save to obj:

.

5.3 4-Simplex

A simple example past three dimensions.

8

from shape_existence.complexes_and_proofs import AbstractSimplicialComplex, Fraction

ASC = AbstractSimplicialComplex

four_simplex = ASC(mode = "maximal_simplices", data = [["a", "b", "c", "d", "e"]])

four_simplex_realized = four_simplex.heuristic_embed(dim = 4, desired_sq_lengths = {"default" : 1}, final_round_digits = 9)

four_simplex_realized.save_as_obj("four_simplex.obj", "./obj_files/")

four_simplex_realized.prove_existence(desired_sq_lengths = {"default" : Fraction(1)}, verbose = True)

And here is the resulting successful proof log:

Attempting to prove existence

Starting realization:

Abstract data:

mode: maximal_simplices

data: [[’a’, ’b’, ’c’, ’d’, ’e’]]

Coordinate Data:

c : [7256651 / 10000000, 7642927 / 8000000, 674111317 / 1000000000, 171828441 / 200000000]

a : [10745679 / 200000000, 636560891 / 1000000000, 339792449 / 1000000000, 280268003 / 1000000000]

e : [828590217 / 1000000000, 293617321 / 1000000000, 851392509 / 1000000000, 137985737 / 1000000000]

b : [474175227 / 500000000, 59615879 / 62500000, 3560127 / 31250000, 61270543 / 1000000000]

d : [395172831 / 500000000, 103949773 / 500000000, 1266793 / 40000000, 175750757 / 250000000]

Desired square lengths:

default : 1

Checking inequality 1:

d = 4

|V| = 5

|E| = 10

Success: d|V| >= |E|

Checking self-intersection:

Square collision distance = 1220703126314795045203246989624242191813040793340115540477650010506609 / 2929687508261558621408864856739271611982097732639332277343750000000000

Collision distance in [32274861 / 50000000, 64549723 / 100000000] ~ [0.6455, 0.6455]

Success: starting realization non-self-intersecting

Checking inequality 2:

sigma_min in [9999 / 5000, 2] ~ [1.9998, 2.0]

Success: sigma_min > 0

Checking inequality 3:

rho_squared = 499054969996360073 / 100000000000000000000000000000000000

rho in [111697691 / 50000000000000000, 611697691 / 50000000000000000] ~ [0.0, 0.0]

sigma_min ^ 2 / (16 * E ^ .5) in [99980001 / 1264911068, 12500000 / 158113883] ~ [0.07904, 0.07906]

Success: rho < sigma_min ^ 2 / (16 * E ^ .5)

Checking inequality 4:

LHS NUM := sigma_min - [sigma_min ^ 2 - 16 * rho * |E| ^ .5] ^ .5 in [-9999 / 50000000, 1251 / 6250000] ~ [-0.0002, 0.0002]

LHS DEN := 8 * |E| ^ .5 in [158113883 / 6250000, 316227767 / 12500000] ~ [25.29822, 25.29822]

LHS := (LHS NUM) / (LHS DEN) in [-9999 / 1264911064, 1251 / 158113883] ~ [-1e-05, 1e-05]

CD / |V| ^ .5 in [32274861 / 111803399, 64549723 / 223606797] ~ [0.28868, 0.28868]

Success: LHS < CD / |V| ^ .5

Success: existence proven

The save to obj function produces a 3D model by using the first 3 coordinates of each point in the initial
realization. Here is a screenshot of a produced model:

.

6 A failed proof

Sometimes our proof technique does not succeed. Consider the hexagonal antiprism pictured below:

9

.

Here is sample code input and output:

from shape_existence.complexes_and_proofs import AbstractSimplicialComplex, Fraction

ASC = AbstractSimplicialComplex

bad_antiprism = ASC(mode = "maximal_simplices", data = [["tm", "t1", "t2"], ["tm", "t2", "t3"], ["tm", "t3", "t4"],

["tm", "t4", "t5"], ["tm", "t5", "t6"], ["tm", "t6", "t1"],

["bm", "b1", "b2"], ["bm", "b2", "b3"], ["bm", "b3", "b4"],

["bm", "b4", "b5"], ["bm", "b5", "b6"], ["bm", "b6", "b1"],

["t1", "b1", "b2"], ["t2", "b2", "b3"], ["t3", "b3", "b4"],

["t4", "b4", "b5"], ["t5", "b5", "b6"], ["t6", "b6", "b1"],

["b1", "t1", "t6"], ["b2", "t2", "t1"], ["b3", "t3", "t2"],

["b4", "t4", "t3"], ["b5", "t5", "t4"], ["b6", "t6", "t5"]])

bad_antiprism_realized = bad_antiprism.heuristic_embed(dim = 3, desired_sq_lengths = {"default" : 1}, final_round_digits = 9)

bad_antiprism_realized.save_as_obj("bad_antiprism.obj", "./obj_files/")

bad_antiprism_realized.prove_existence(desired_sq_lengths = {"default" : 1}, verbose = True)

Attempting to prove existence

Starting realization:

Abstract data:

mode: maximal_simplices

data: [[’tm’, ’t1’, ’t2’], [’tm’, ’t2’, ’t3’], [’tm’, ’t3’, ’t4’], [’tm’, ’t4’, ’t5’], [’tm’, ’t5’, ’t6’],

[’tm’, ’t6’, ’t1’], [’bm’, ’b1’, ’b2’], [’bm’, ’b2’, ’b3’], [’bm’, ’b3’, ’b4’], [’bm’, ’b4’, ’b5’],

[’bm’, ’b5’, ’b6’], [’bm’, ’b6’, ’b1’],[’t1’, ’b1’, ’b2’], [’t2’, ’b2’, ’b3’], [’t3’, ’b3’, ’b4’],

[’t4’, ’b4’, ’b5’], [’t5’, ’b5’, ’b6’], [’t6’, ’b6’, ’b1’],[’b1’, ’t1’, ’t6’], [’b2’, ’t2’, ’t1’],

[’b3’, ’t3’, ’t2’], [’b4’, ’t4’, ’t3’], [’b5’, ’t5’, ’t4’], [’b6’, ’t6’, ’t5’]]

Coordinate Data:

bm : [242420139 / 1000000000, 88209211 / 200000000, 347417067 / 500000000]

t2 : [64955007 / 62500000, 1460273147 / 1000000000, 308853307 / 500000000]

b3 : [40363343 / 1000000000, 283159893 / 200000000, 37309113 / 62500000]

b4 : [-35285911 / 125000000, 766903711 / 1000000000, -45931877 / 500000000]

b6 : [391400809 / 1000000000, -269887657 / 500000000, 823167127 / 1000000000]

b1 : [357116567 / 500000000, 109120773 / 1000000000, 302372923 / 200000000]

b5 : [-106536099 / 1000000000, -105372201 / 500000000, 21017483 / 1000000000]

t1 : [1427998777 / 1000000000, 141202073 / 200000000, 1145333333 / 1000000000]

b2 : [21551239 / 40000000, 543390033 / 500000000, 55951509 / 40000000]

t4 : [240379443 / 500000000, 337122819 / 1000000000, -574688421 / 1000000000]

t3 : [70664569 / 125000000, 1275577083 / 1000000000, -242530763 / 1000000000]

t6 : [268599499 / 200000000, -116264219 / 500000000, 813382133 / 1000000000]

t5 : [869599511 / 1000000000, -26056471 / 62500000, -727601 / 15625000]

tm : [20084469 / 20000000, 527264939 / 1000000000, 256555313 / 1000000000]

Desired square lengths:

default : 1

Checking inequality 1:

d = 3

|V| = 14

|E| = 36

Success: d|V| >= |E|

Checking self-intersection:

Square collision distance = [LONG FRACTION OMITTED]

Collision distance in [79145971 / 100000000, 19786493 / 25000000] ~ [0.79146, 0.79146]

Success: starting realization non-self-intersecting

Checking inequality 2:

sigma_min in [549 / 5000, 11 / 100] ~ [0.1098, 0.11]

Success: sigma_min > 0

Checking inequality 3:

rho_squared = 19213882758715484274732620078053 / 500000000000000000000000000000000000

10

rho in [619901 / 100000000, 309951 / 50000000] ~ [0.0062, 0.0062]

sigma_min ^ 2 / (16 * E ^ .5) in [301401 / 2400000004, 121 / 960000] ~ [0.00013, 0.00013]

Failed: unable to verify rho < sigma_min ^ 2 / (16 * E ^ .5)

We see the proof fails because the 3rd inequality is not satisfied. In general, this happens due to some combi-
nation of two factors — (1) the initial lengths are insufficiently close to the desired lengths and (2) the lowest
singular value is not sufficiently large — and so we can not guarantee a nearby realization with the desired
lengths. In this case the failure is due to σmin, which is zero at a realization with the desired edge lengths6.
Because of this, we believe Theorem 2 cannot be applied to prove existence (unless the starting realization
already has the desired lengths).

7 Final Notes

In collaboration with Peter Doyle and Zili Wang, we have used this technique to examine triangulations of the
sphere with at most 6 triangles meeting at a given vertex. We have proven that thousands of such polyhedra
may be embedded in three-space with unit length edges.

References

[1] Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Geometric Embeddability of Complexes is ∃R-
complete. 2021. arXiv: 2108.02585 [cs.CC].

[2] David Eberly. Convex Quadratic Programming. url: https://www.geometrictools.com/Documentation/
ConvexQuadraticProgramming.pdf. (accessed: June 2023).

[3] Branko Grünbaum. “Graphs of polyhedra; polyhedra as graphs”. In: Discrete Mathematics 307.3-5 (2007),
pp. 445–463. doi: https://doi.org/10.1016%2Fj.disc.2005.09.037.

[4] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1958. isbn: 978-0-
521-38632-6.

[5] Carlton E. Lemke. “A method of solution for quadratic programs.” In: Management Science 8.4 (1962),
pp. 442–453.

[6] Günter Rote Sergio Cabello Erik D. Demaine. “Planar embeddings of graphs with specified edge lengths”.
In: Journal of Graph Algorithms and Applications 11.1 (2007), pp. 259–276.

[7] Ernst Steinitz. “IIIAB12: Polyeder und Raumeinteilungen”. In: Encyclopädie der mathematischen Wis-
senschaften (in German) Band 3 (Geometries) (1916), pp. 1–139.

[8] Leonid Vaserstein. Introduction to Linear Programming. Pearson, 2002. isbn: 978-0130359179.

[9] Günter M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-Verlag, 1995. Chap. 4,
pp. 103–126. isbn: ISBN 0-387-94365-X.

A Rational bounds on the lowest singular value of a matrix with
rational entries

Let A be a matrix with rational entries and smallest singular value σmin. We give a procedure to give a good
rational interval containing σmin. Note that the procedure yields correct bounds if it runs to completion, but
may (theoretically) encounter an error.

1. Using any standard scientific library, compute a floating point approximation f of the smallest singular
values of A (converting the fractions to floating point first).

2. Round f down and up a few decimal points to obtain rational numbers σlb, σub. Set σlb to 0 if negative.

3. Let B = ATA or AAT , whichever has smaller dimensions (and choosing, say, ATA if it’s a tie).

6To see this, first note that the Jacobian is a map from R42 to R36. We lose 6 rank from infinitesimal translations and rotations of
the coordinates, and 2 more rank from the top and bottom vertices in the middle of the hexagons, which, when moved perpendicular
to the hexagon through their neighbors, only changes edge lengths to second order. Thus there can be at most 34 non-zero singular
values.

11

4. Prove σlb is indeed a lower bound on σmin by proving

B − σ2
lbI

is positive definite, and prove σub is an upper bound on σmin by proving

B − σ2
ubI

is not positive definite.7

If the positive-definiteness checks succeed, and in practice they do, we now have σmin ∈ [σlb, σub].

B Rational bounds on the square root of a rational number

Let x be a rational number for which we wish to obtain good rationally bounds on
√
x. We give a simple

procedure to obtain these. Once again, note that the procedure yields correct bounds if it runs to completion,
but may (theoretically) encounter an error.

1. Convert the rational number x to a floating point number and obtain a floating point square root f .

2. Round f up and down a few decimal points to obtain rational numbers l, u. Set l to 0 if it’s negative.

3. Verify l2 ≤ x ≤ u2.

If these steps all succeed, we now have proven rational bounds on the square root of a rational number.

One can apply a similar idea to rationally bound the square root on a rational interval — just lower bound the
square root of the lower endpoint and upper bound the square root of the upper. This allows square roots to
be incorporated into a rational interval arithmetic.

C Exactly computing the square distance between two convex sets

Let X, Y be convex sets in Rd with respective vertices x1, ..., xm and y1, ..., yn. Suppose the vertices have
rational coordinates.8

Determining the shortest squared distance between the X and Y is a quadratic programming problem:

minimize ||
m∑
i=1

αixi −
n∑

i=1

βixi||2

such that
∑

αi =
∑

βi = 1;αi, βi ≥ 0.

Note here that αi, βi are barycentric coordinates.

We can bring this into the standard form of a quadratic program as follow. Let P be the matrix with columns
xi and let Q be the matrix with columns yi. Let α, β be the respective column vectors of the αi, βi. Let 0k, 1k
denote row vectors of zeroes and ones of length k.
Then our problem becomes

minimize
(
αT βT

)(XTX −XTY
−Y TX Y TY

)(
α
β

)

such that

1m 0n
−1m 0n
0m 1n
0m −1n

(
α
β

)
≥

1
−1
1
−1

 ,

(
α
β

)
≥ 0.

The matrix (
XTX −XTY
−Y TX Y TY

)
is positive semi-definite, and so this is a convex quadratic program. One method to solve it exactly is to
first convert it to a linear complementarity problem (LCP) and then solve this LCP with Lemke’s algorithm.

7We can decide whether a symmetric matrix of rationals is positive definite by applying Sylvester’s Criterion. [4]
8This all works over any ordered field.

12

[5][2] Note that this solution process will not leave the field generated by the coefficients, in our case the rationals.

The above procedure will exactly compute the squared distance between two convex bodies with rational coor-
dinates, and, if desired, we may then apply our rational square root procedure to obtain a good rational interval
containing this distance.

Note that while finding the minimum square distance is a quadratic program, deciding if the bodies intersect
is, using the well-known reductions, a linear program (see e.g. [8]):

determinine if there exist αi, βi ≥ 0

such that

m∑
i=1

αixi =

n∑
i=1

βixi

and
∑

αi =
∑

βi = 1.

C.1 Example distance computation

Here is an example where this computation is performed using the shape-existence library to compute the
distance between a line segment and triangle in E3:

from shape_existence.flexible_cqp import simplex_square_distance, Fraction

triangle = [[3,0,0],[0,3,0],[0,0,3]]

segment = [[0,1,1],[1,0,1]]

print(simplex_square_distance(triangle, segment, map_to_type = Fraction))

Here is the output:

(1 / 3, ([1 / 3, 4 / 3, 4 / 3], [0, 1, 1]))

Parsing the output, the shortest square distance is 1/3, and the pair of closest points is (1/3, 4/3, 4/3) and
(0, 1, 1) on the triangle and segment respectively.

13

