
ON THE DENSITY OF ABUNDANT NUMBERS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Mitsuo Kobayashi

DARTMOUTH COLLEGE

Hanover, New Hampshire

September 1, 2010

Examining Committee:

Carl B. Pomerance, Chair

Dorothy Wallace

Florian Luca

Andrew Yang

Brian W. Pogue, Ph.D.
Dean of Graduate Studies

Copyright by
Mitsuo Kobayashi

2010

Abstract

In [3, 4], Behrend initiates the study of the asymptotic density of abundant numbers.

More recently Deléglise [8] used Behrend’s upper bound ideas to calculate improved

bounds on this density. In this work, we make further improvements to the Deléglise

algorithm to determine new bounds on the density of abundant numbers. We will

also turn Behrend’s lower bound idea into an alternative method of bounding the

density.

ii

Acknowledgements

An enormous amount of effort has been put into this thesis, and not only by the

author. First and foremost, I would like to acknowledge the tireless efforts of my

advisor, Carl Pomerance, to guide me to the completion of this work. Not only was

he generous with his ideas and time, but he patiently filled in gaps where my ignorance

showed and ultimately motivated me until I was done. I also appreciate the careful

reading of early drafts and many comments from the rest of the Committee, Florian

Luca, Dorothy Wallace, and Andrew Yang.

I was also privileged to have many graduate students as colleagues to smooth

out the rough bits of graduate life. Upon my arrival to Dartmouth, Dominic Klyve

in particular helped me to get acclimated and to show me the ropes. Paul Pollack

provided plenty of entertainment when he was not teaching me the ins and outs of

analytic number theory. And Nick Scoville’s optimism was often just what I needed

to get through another day at the office.

None of this could have been possible without my family’s support, starting from

the move to a strange new state called “New Hampshire,” where the snow stays on

the ground six months of the year. My family’s patience with my studies is also

appreciated, especially in the final years when “Daddy’s work” was equivalent to

“writing a thesis.”

iii

Finally, I would like to thank Marc Deléglise for providing me with his C++ code

for calculating bounds for the density of abundant numbers. Without this jump start,

it would have been very difficult to begin working in this area.

iv

Contents

Abstract . ii

Acknowledgements . iii

1 Introduction 1

1.1 Numbers, perfect and otherwise . 1

1.2 Natural density . 2

1.3 The densities of abundant, perfect, and deficient numbers 8

1.4 Outline of work . 10

2 Behrend’s thesis 14

2.1 Preliminaries . 14

2.2 The existence of the density of α-abundants 16

2.3 Behrend’s thesis . 22

3 The Deléglise program 34

3.1 The Behrend-Deléglise method . 35

3.2 The Deléglise program . 37

3.3 Asymptotic complexity . 41

3.3.1 Running time . 41

v

3.3.2 The error estimate . 42

3.3.3 The estimate for E1 . 43

3.3.4 The second sum . 53

3.3.5 Asymptotic complexity . 57

4 Improvements to the Deléglise algorithm 61

4.1 Some lower bound improvements . 61

4.1.1 The small primes method . 62

4.1.2 The medium primes method 64

4.1.3 The large primes method . 67

4.2 Strategies for upper bound improvements 80

4.2.1 Improving bounds on dAy,α 81

4.2.2 Piggybacking onto the large primes method 105

4.3 The hybrid algorithm . 121

5 The α-pnd method 149

5.1 Primitive nondeficient numbers . 149

5.2 A density lower bound method . 153

5.3 The “significance” of prime powers 161

5.4 An ordering of α-pnd’s . 162

5.5 Asymptotics of the pnd method when α = 2 167

5.6 Special values of α . 171

5.7 Liouville numbers . 175

5.8 Organization . 205

5.9 An α-pnd listing algorithm . 208

vi

5.10 The α-pnd density algorithm . 211

5.11 A result of Shapiro . 217

5.11.1 The capping off lemma . 217

5.11.2 The offspring lemma . 221

5.11.3 A proof of Shapiro’s theorem 224

vii

Chapter 1

Introduction

1.1 Numbers, perfect and otherwise

From antiquity there has been a fascination with numbers considered perfect, that is,

those numbers whose proper divisors sum to the numbers themselves. The sequence

of perfect numbers then known was

6, 28, 496, 8128,

and various assertions were made concerning these numbers, such as:

(a) There are infinitely many perfect numbers.

(b) All perfect numbers are even.

Euclid’s proof that if a prime number p = 2n+1 − 1 for some natural number n then

2np is perfect, may have bolstered the belief in these statements. In fact, if they had

access to the list of currently known perfect numbers, they would have nothing to

1

1.2 Natural density

amend. As of July 2010, 47 perfect numbers were known, all even. (Of course, it can

be argued that the computer programs used to find the largest of these were only

looking for the even ones.) Nevertheless, the proof of the original claims remain as

elusive today as ever. These are among the oldest problems in mathematics. [18]

What about numbers that are not perfect? As early as c. 100 A.D., Nicomachus

[9] classified these into two categories: If a number was found to have a sum of

aliquot parts which exceeds the number itself, it was considered abundant; if the sum

was smaller, it was called deficient. In contrast to the high opinion that the perfect

numbers received, the abundant and deficient numbers were often scorned as being of

an inferior class. This feeling may be detected in some alternative ways in which the

numbers were referred, such as the rather dramatic terms superfluous and defective for

abundant and deficient numbers, respectively. There is even a hint of this remaining

in the modern term ‘deficient,’ which word still has a negative connotation.

Turning our attention to mathematics, a natural (and neutral) question to ask

about these numbers is: How many are there of each type? As we have indicated,

it is still not known how many perfect numbers there are, whether there are finitely

many or infinitely many. But we do know that there are infinitely many numbers in

each of the other categories. In fact, we know more: there are more deficient numbers

than abundant, in a sense that we will make precise in the next section.

1.2 Natural density

Consider the sequence of natural numbers and the sequence of positive even numbers:

1, 2, 3, 4, 5, . . . , 2, 4, 6, 8, 10,

2

1.2 Natural density

Although we are trained as mathematicians to think of these sets as having the

same size in the sense of cardinality, our natural inclination is to think of the second

sequence as “half as dense” as the first. Where does this intuition come from? First,

we have access to the initial terms of each sequence, and can compare the number

of terms up to some bound x. Then we extrapolate, using our imaginations to guess

what would happen when x is large. We seek to capture this notion of “density” in

the following definition.

Definition 1.1. Let S denote a subset of the natural numbers and for x ≥ 1 let

S (x) = S ∩ [1, x] be the set consisting of the elements of S not exceeding x. We

define the natural density of S , dS , to be the limit

dS = lim
x→∞

|S (x)|
x

,

if such a limit exists. In any case the lim sup and lim inf exist, and these are respec-

tively called the upper and lower natural densities, with the corresponding notations

dS and dS .

Thus if we let N be the set of natural numbers, it is easy to see that dN = dN = 1

so that dN = 1 and likewise defining E to be the set of even numbers, dE = dE = 1
2

so dE = 1
2
, as we had anticipated.

It may be the case that a set does not have a natural density. For instance, the

following ad hoc construction produces such a set. Put

S = {1, 4, 5, 6, 7, 16, 17, . . . },

where the numbers in the intervals [2n, 2n+1) are included if n is even, and excluded

3

1.2 Natural density

if n is odd. Calling numbers in the interval [2n, 2n+1) the n-block, we see that since

each n-block contains 2n elements, we find that counting the members of S up to

the 2m-block gives the bound

dS ≥ lim
m→∞

|S (22m+1 − 1)|
22m+1 − 1

= lim
m→∞

(4m+1 − 1)/3

22m+1 − 1
=

2

3
,

while counting up to the 2m + 1-block gives

dS ≤ lim
m→∞

|S (22m+2 − 1)|
22m+2 − 1

= lim
m→∞

(4m+1 − 1)/3

22m+2 − 1
=

1

3
.

Since dS 6= dS , dS does not exist in this case.

On the other hand, many sequences of numbers which are of interest to number

theorists do have a density. Some of these sequences have the general tendency of

the terms spreading out as we look at increasingly larger terms, in which case their

densities are zero. In this class we find such examples as the sequence of square

numbers, that of the prime numbers, and of the set of numbers that are the product

of two distinct primes. To see this we first note in general that if we know for a set

S that the number of its members not greater than x, |S (x)|, grows as O(x · f(x))

for some function f(x) = o(x), then by the definition of natural density the set will

have natural density zero. Among the examples mentioned, the first set is clearly

O(
√

x) = O(x · x−1/2), and the second set is O(x · 1/ log x) by the Prime Number

Theorem. To estimate the third set, we find an upper bound for the quantity of

numbers pq ≤ x where p and q are prime and p < q. Then p <
√

x, and there are

4

1.2 Natural density

π(x/p) choices possible for q. Thus the number of pq ≤ x is

∑

p<
√

x

π(x/p) = O


 ∑

p<
√

x

x/p

log(x/p)


 = O


 x

log x

∑

p<
√

x

1

p


 = O

(
x · log log x

log x

)
.

From the foregoing discussion, it becomes apparent that sets with non-trivial

(non-zero) density are in some sense special, and we may wonder which sets have this

property. Certainly in analogy with the example of the even numbers, we have that

any set of multiples has non-trivial density. Rather than proving this directly, we first

note that a set of multiples is a special case of a set which is periodic, in the sense

that if we listed the members of such a set along the number line and partitioned the

natural numbers into intervals [1, n], [n + 1, 2n], . . . , each of length n for some n ∈ N,

we would observe the same spacing between numbers in each interval. In other words,

the set is some union of congruence classes modulo n.

Definition 1.2. We say that a set S is periodic if it can be written as a union of

equivalence classes ai mod n for some n ∈ N and ai ∈ [1, n],

S =
k⋃

i=1

(ai + nN0).

Then we say that S has period n. We call a set eventually periodic if it can be

written as a union of a finite set and a set which is the translate of a periodic set.

We first prove that any periodic set has a density.

Lemma 1.3. If S is periodic with period n, then

dS =
|S (n)|

n
.

5

1.2 Natural density

Proof. Since S is periodic, we may write it as

S =
⋃
a∈A

(a + nN0)

for some set of natural numbers A ⊆ [1, n]. Then

dS = lim
x→∞

|S (x)|
x

= lim
x→∞

|∑a∈A(a + nN0)(x)|
x

= lim
x→∞

∑
a∈A

(
x
n

+ O(1)
)

x

=
|A|
n

=
|S (n)|

n
,

proving the Lemma.

Noting that any set of multiples is a periodic set, we see that such a set always has

a density. Moreover, any finite union of multiple sets is a periodic set, so these also

have densities. We now go a step further. Since a density is determined by taking

a limit out to infinity, we might hope that any irregularities at the beginning of a

sequence would “wash out,” so that eventually periodic sets behave in the same way

as periodic ones in the limit. We will prove this in the next proposition.

Proposition 1.4. Let S ′ be a finite set, T a periodic set with period n, and t ∈ N0,

so that S = S ′ ∪ (t + T) is eventually periodic. Then

dS =
|T (n)|

n
.

6

1.2 Natural density

Proof. Let m = max(S ′ ∪ {t}) so that T ∩ (m,∞) is periodic with period n. Then

dS = lim
x→∞

|S (m)|+ |S ∩ (m,x]|
x

= lim
x→∞

|S (m)|+ |T ∩ [1, x−m]|
x

= lim
x→∞

|S (m)| − |T ∩ [x−m, x]|+ |T (x)|
x

= lim
x→∞

|T (x)|+ O(1)

x

=
|T (n)|

n

by Lemma 1.3.

So now we know how to solve the density problem for a fairly large class of sets.

Are these the only sets with nontrivial density? Interestingly, there are sets having

nontrivial density that are not eventually periodic.

Example 1.5. It is easy to show that the set of squarefree numbers is not eventually

periodic. For suppose it were. Then it would contain the set a + nN for some

a, n, and in particular the number a + a(n + 2)n = a(n + 1)2 would be squarefree,

a contradiction. It is known that the density of the set of squarefree numbers is

1
ζ(2)

= 6
π2 . With this additional information it is immediate that the set of squarefree

numbers is not eventually periodic. Indeed, we observe that any eventually periodic

set must have a rational number as its density.

Another issue which will arise is the question of infinite additivity. That is, is it

true that a density for a set S can be determined by first partitioning it into infinitely

many subsets Si and determining the densities of Si for each i, and then summing

these densities? The following examples will answer this question in the negative.

7

1.3 The densities of abundant, perfect, and deficient numbers

Example 1.6. Consider the set of natural numbers N. If we partition this set into

singleton sets Sn = {n} for n = 1, 2, . . . , then it is clear that dSn = 0 for each n, but

d
∞⋃

n=1

{n} = dN = 1 6= 0 =
∞∑

n=1

dSn.

Thus we see that densities are not infinitely additive.

Example 1.7. We return to the example of the set of squarefree numbers. Recall that

the density of the primes and the density of squarefree numbers having two prime

factors are each zero. It can be shown by induction that the density of squarefree

numbers having k primes is zero for any k. If we denote this set by Sk, we conclude

that

dS = d
(⊔

Sk

)
=

π2

6
6= 0 =

∞∑

k=1

dSk,

so that in this case, as well, densities are not infinitely additive.

1.3 The densities of abundant, perfect, and defi-

cient numbers

Denote the sets of deficient, perfect, and abundant numbers by D ,P, and A , respec-

tively. We will often be considering the set of non-deficient numbers, so we also write

A ′ = D c = P ∪ A . Harold Davenport [5], basing his work on Isaac Schoenberg’s

[31], proved that each of these densities exists and that dP = 0. Note that the com-

plement of an eventually periodic set is eventually periodic. As we will subsequently

see that A ′ is not eventually periodic, neither is D . Also, since limits are finitely

additive, we have d(P ∪ A) = dA and dD = 1 − dA . This shows that we need

8

1.3 The densities of abundant, perfect, and deficient numbers

only determine one of dD or dA to find the other, so in particular we may focus our

attention on the natural density of abundant numbers. However, there is no known

closed form expression for dA . In 1932, generalizing a method of Issai Schur, Felix

Behrend [3] showed that for all n

|A (n)|
n

< 0.47.

Thus, taking for granted Davenport’s result on the existence of the density, there are

more deficient numbers in density than there are abundant numbers. In the following

year (in fact in the same year as the Davenport density result), Behrend [4] showed

for his doctoral dissertation that for large n

0.241 <
|A (n)|

n
< 0.314,

so that there are at least twice as many deficients as abundants. These bounds

were later improved by Hans Salié [30] (0.246 < dA) Charles Wall, et al., [35, 36]

(0.2441 < dA < 0.2909, note that the lower bound is worse than Saliè’s!) and finally

by Marc Deléglise [8] who found the current bounds

0.2474 < dA < 0.2480,

giving dA = 0.247 . . . so that the density of abundant numbers is slightly less than

1/4.

At this point a number of questions naturally arise. Noting the painfully slow

progress made until now in tightening the bounds for dA , we may wonder how much

9

1.4 Outline of work

these results can be significantly improved. For instance, can the next digit be found?

If the bounds cannot be significantly improved, why not? Finally, can the study of

A be generalized to a larger class of sets? In the remainder of this work we will begin

to answer such questions by continuing where Deléglise’s paper left off and study

improvements in the calculation of the density of abundant numbers as well as other

related sets.

1.4 Outline of work

We will begin our study by returning to the original work of Behrend. With the

Erdős–Wintner Theorem at our disposal, we will be able to recast his work in terms

of densities. This will lead us to the method used by Deléglise to bounding the density

of abundant numbers. Deléglise took the upper bound method used by Behrend and

wrote a program that can calculate both upper and lower bounds for the density of

abundant numbers.

Our first contribution will be to study the computational complexity of the pro-

gram used by Deléglise. Here a special role is played by the numbers n ≤ z with

prime factors of n not exceeding y, and so the counting function of these numbers,

Ψ(z, y), makes an appearance. As a consequence, we have y and z as parameters for

the Deléglise program. By studying the running time T (z, y) of the program, we find

that

T (z, y) = O((log z)2Ψ(z, y)).

The function Ψ(z, y) has been extensively studied, and it has been found that,

taking y = z1/u, the behavior of Ψ(z, z1/u) is governed by u. Writing the difference

10

1.4 Outline of work

between the upper and lower bounds of the Deléglise program as E(z, y), we use

results on Ψ(z, z1/u) to prove the following.

Theorem 1.8. With parameters y, z chosen to be z = y
log log y

log log log y so that

u =
log log y

log log log y
,

we have

E(z, y) ¿ 1

uu
.

This means that the Deléglise program can compute the density of abundant

numbers to any desired precision. Combining the results for T (z, y) and E(z, y), we

conclude that the running time of the program grows at worst double-exponentially

with the number of digits desired in the density:

Corollary 1.9. Let t be the time that the Deléglise algorithm takes to determine the

density dAα to within 10−k. Then we have that

t < eeck

,

where c is an absolute constant.

Next, we will detail a number of improvements that can be made to the Deléglise

algorithm in order to close the gap between the upper and lower bounds. The lower

bound improvements involve focusing on either primes smaller or larger than y, and

are thus called the small primes and large primes methods, respectively. Many of the

upper bound improvements involve refining a method of Behrend to bound density

using moments of functions related to σ(n)/n. A further improvement is made by

11

1.4 Outline of work

using an asymptotic result of Paul Erdős with explicit constants. By combining all

such improvements, we tighten the known bounds to

0.2476171 < dA < 0.2476475,

and thus determine the next decimal digit for the density of abundant numbers; we

now know that dA = 0.2476

Returning our attention to Behrend’s dissertation, we develop the seed of his

lower bound idea. Behrend used a finite subset of primitive nondeficient numbers

(pnd’s) to determine the density of a subset of abundant numbers. A primitive

nondeficient number is a nondeficient number that does not have any nondeficient

proper divisors. We also consider the generalized version of these numbers, called α-

primitive nondeficient (α-pnd), which are numbers a that have σ(a)/a ≥ α but proper

divisors d with σ(d)/d < α. By considering the set of all pnd’s P = {a1, a2, . . . }, which

can be used to generate all nondeficient numbers, we show how these can be used to

determine the density of the set of the abundant numbers themselves. This is done by

first discovering a way of organizing the nondeficient numbers. We are then naturally

led to a new infinite series expression for the density of abundant numbers.

Theorem 1.10. The density of abundant numbers can be expressed as the infinite

sum

dA =
∑

ai∈P

ϕ(ci)

ci

1

ai

,

where ci = Lk/ai.

Here Lk is the lcm of the first k prime powers ordered in a specific manner. This

expression allows us to calculate bounds for the density of abundants. The computa-

12

1.4 Outline of work

tional complexity of this new method is examined. All of these results generalize to

the α-pnd case.

We conclude with a demonstration of the utility of the new approach to α-pnd’s.

Some results on α-pnd’s are proven, culminating in a new proof of the result of Shapiro

that there are infinitely many α-pnd’s n with k distinct prime factors if and only if

α can be expressed as

α =
σ(a)

a
· b

ϕ(b)
, (a, b) = 1, b > 1,

and ω(a) + ω(b) < k.

13

Chapter 2

Behrend’s thesis

In this chapter, we will introduce the work of Behrend [4], who published the first

bounds on the upper and lower density of abundant numbers. In order to simplify

our discussion, we will first prove the existence of the density of abundant numbers

using the Erdős-Wintner theorem [16]. Next we will describe Behrend’s method

as explained in general form in Deléglise [8]. This will lay the foundation for our

discussion of subsequent chapters when we study the Deléglise algorithm and make

improvements in the algorithm.

2.1 Preliminaries

In this section, we establish the basic notation and concepts that will be used in the

remainder of this document.

We will always use n and m to mean natural numbers, and use p and q for prime

numbers. We denote the product of the primes p ≤ y by Π(y), with Π(y) = 1 when

y < 2. Thus Π(2) = 2, Π(π) = 6, and Π(5) = 30. We let P (n) and p(n) denote

14

2.1 Preliminaries

respectively the largest and smallest prime dividing n when n > 1, and P (1) =

p(1) = 1.

Let n have the canonical prime decomposition

n =
k∏

i=1

pei
i ,

namely with pi primes and pi 6= pj when i 6= j. We use the notation m‖n to indicate

that m is a unitary divisor of n. In other words, m is a divisor of n such that

(m,n/m) = 1. In particular 1‖n for all n and pei
i ‖n for each i, 1 ≤ i ≤ k.

Proposition 2.1. Let f be a multiplicative function and f(pi) ≥ f(pi−1) on primes

p when i ≥ 1. If m,n are natural numbers, then f(mn) ≥ f(n). If the inequality on

prime powers is strict, namely f(pi) > f(pi−1) when i ≥ 1, we have f(mn) = f(n)

only in the case m = 1.

Proof. The result is true when m = 1. If m > 1, let pe‖mn. Then pe′‖n where

0 ≤ e′ ≤ e. Thus f(pe) ≥ f(pe′) for each unitary prime power divisor of mn. Since f

is multiplicative, f(1) = 1, and with the condition f(pi) ≥ f(pi−1) we have for each

i ≥ 1 that f(pi) ≥ 1. Then multiplying together the inequalities yields

f(mn) =
∏

pe‖mn

f(pe) ≥
∏

pe′‖n
f(pe′) = f(n).

If we have f(pi) > f(pi−1), repeating the argument with this condition results in the

strict inequality.

Example 2.2. We denote by σ(n) the sum of the positive divisors of n. Thus σ(1) = 1,

σ(p) = p + 1, and σ(6) = 1 + 2 + 3 + 6 = 12. We further define h(n) = σ(n)/n. It is

15

2.2 The existence of the density of α-abundants

immediate that

h(n) =
∑

d|n

1

d
. (2.1)

Since both σ(n) and 1/n are multiplicative functions, their product h(n) is also mul-

tiplicative. We also note that h(pi) = h(pi−1) + 1/pi. Since h satisfies the hypotheses

of the previous proposition, we have that proper multiples of a natural number n have

values of h strictly larger than h(n).

In fact, from (2.1) it is easy to see that h(mn) ≥ h(n) with equality only when

m = 1, since the terms of the sum for h(n) is a subset of the terms of the sum for

h(mn), and is a proper subset unless m = 1. We will be making essential use of this

property of h in what follows.

The following example should be compared with the example above.

Example 2.3. We denote by ϕ(n) the Euler ϕ-function, which is the number of m ∈
[1, n] which are relatively prime to n. Noting that ϕ(n) is multiplicative, we have

that the quotient n/ϕ(n) is multiplicative. In contrast to the previous example,

however, we have pi/ϕ(pi) = 1 + 1/(p − 1) for all i ≥ 1. Thus we have only that

n/ϕ(n) ≤ mn/ϕ(mn) when m > 1.

2.2 The existence of the density of α-abundants

In 1928, Schoenberg [31] proved for each α ∈ [0, 1] the existence of the density of

numbers n such that ϕ(n)/n ≥ α. His proof is technical and involves the study

of the mean values of the powers of ϕ(n)/n, the so-called moments of ϕ(n)/n. In

1933, Davenport [5] adapted this proof to work also for h(n) = σ(n)/n. Incidentally,

Davenport reports in the same article that each of Behrend and Sarvadaman Chowla

16

2.2 The existence of the density of α-abundants

independently proved the same result. In order to state the theorem, we will make

the following definitions.

Definition 2.4. Let Dα,Pα, and Aα denote the sets of numbers n such that h(n) <

α, h(n) = α, and h(n) > α, respectively. In addition, we define

D ′
α := Dα ∪Pα and A ′

α := Aα ∪Pα.

Then we may state the theorem of Davenport as follows.

Theorem 2.5 (Davenport, et al., 1933). For each α, dA ′
α exists. Considered as a

function in α, dA ′
α is continuous.

In 1939 a much more general result was proven by Erdős and Wintner [16]. The

theorem is stated in terms of a limiting distribution function for an additive arith-

metic function. We first define a distribution function (d.f.) to be a non-decreasing

function D : R → [0, 1] which is right-continuous and satisfies limα→−∞ D(α) = 0,

limα→∞ D(α) = 1. A particularly simple class of distribution functions are those that

are step functions. Such a d.f. is called purely discrete. These d.f.’s are necessarily

not continuous. A simple example of a continuous distribution function is a function

that can be defined with a Lebesgue-integrable function f ≥ 0 such that ‖f‖1 = 1,

that is, having L1 norm 1, by

D(α) =

∫ α

−∞
f(t)dt.

Such a d.f. is called absolutely continuous. If a continuous distribution function D

17

2.2 The existence of the density of α-abundants

has ∫

S

dD(α) = 1

where S ⊆ R has zero Lebesgue measure, we say that D is purely singular. This type

of d.f. is interesting in view of the Radon–Nikodym Theorem which implies that any

continuous d.f. is a linear combination of an absolutely continuous d.f. and a purely

singular one. If a distribution function is either purely discrete, or continuous and

purely singular, or absolutely continuous, we say that the d.f. is of pure type.

We next define another function which will turn out to be a distribution function,

based on a real-valued arithmetic function f . For each N ≥ 1 we define the function

DN(α) = DN,f (α) :=
1

N
|{n ≤ N : f(n) ≤ α}|

to be a distribution function for f . Note that this is indeed a distribution function,

and is in fact an example of one that is purely discrete. A sequence {FN}∞N=1 of

distribution functions is said to converge weakly to a distribution function F if

lim
N→∞

FN(α) = F (α)

at every point α at which F is continuous. If {DN}∞N=1 is a sequence of distribution

functions for an arithmetic function f that converges weakly to a distribution function

D, we say that f has a limiting distribution function D (or simply has a distribution

function D, or has a limit law with d.f. D). Now we may state the Erdős–Wintner

theorem.

Theorem 2.6 (Erdős, Wintner). Let f be a real additive function. For f to have a

18

2.2 The existence of the density of α-abundants

limiting distribution function, it is necessary and sufficient that the three series

∑

|f(p)|>1

1

p
,

∑

|f(p)|≤1

f(p)

p
,

∑

|f(p)|≤1

f 2(p)

p

converge. The limiting distribution is of pure type. It is continuous if and only if the

series
∑

f(p)6=0

1

p

diverges.

The Erdős–Wintner Theorem provides the principal tool that we can use to prove

the existence of the densities of a large class of sets which includes the set of abundant

numbers.

In our first application of Erdős–Wintner, we will prove the Davenport result

that for any α, the density of the set A ′
α of numbers n with σ(n)/n ≥ α exists and

varies continuously with α, by showing that the d.f. for h(n) = σ(n)/n exists and

is continuous. Note that as h is multiplicative, log h is additive. Thus the Erdős–

Wintner theorem will give a result about the distribution function

D(log α) = lim
N→∞

1

N
|{n ≤ N : log h(n) ≤ log α}|

for α > 0. Note the reversal in the direction of the inequality compared to the sets as

stated in the Davenport theorem. In fact, D(log α) = dD ′
α for α > 0. To prove the

existence of these densities, we need only check that log h satisfies the conditions in

the Erdős–Wintner theorem. We do this by noting that since log h(p) = log(1+1/p) <

19

2.2 The existence of the density of α-abundants

1/p < 1, the three sums in the statement of the theorem are bounded above by

∑

| log h(p)|>1

1

p
= 0,

∑

| log h(p)|≤1

log h(p)

p
≤

∑
p

1

p2
,

∑

| log h(p)|≤1

(log h(p))2

p
≤

∑
p

1

p3
,

so each of these sums converges. This proves that dD ′
α exists for α > 0. Of course,

we have trivially that dD ′
α = 0 for α ≤ 0, so dD ′

α exists for all α. Next, by finite

additivity of densities, the density of the complement of D ′
α, namely Aα, exists for

all α.

We can also prove that the distribution function D(log α) is continuous. We first

note that log h(p) 6= 0 for all p. Then

∑

log h(p)6=0

1

p
=

∑
p

1

p

which diverges by a theorem of Euler [27, p. 7], so dD ′
α = D(log α) is continuous for

α > 0. Since dD ′
α = 0 for α ≤ 0, we can again extend continuity of dD ′

α to all α.

We now use this result to show that dPα = 0. First we note that Pα = D ′
α \Dα.

Now for ε > 0 we have that

d (D ′
α \Dα) ≤ lim

ε→0+
d

(
D ′

α \D ′
α−ε

)
= lim

ε→0+
(dD ′

α − dD ′
α−ε) = 0.

We thus conclude that the density of any set Pα = D ′
α \Dα is 0, and also that each

set Dα and Aα has a density. Returning our attention to the case α = 2, we conclude

that D , P, and A each have densities, and additionally that dP = 0.

Finally, we make note of another property of the distribution function dD ′
α, that

for α > 1, dD ′
α is strictly increasing. Let 1 ≤ α1 < α2. By finite additivity of the

20

2.2 The existence of the density of α-abundants

density, it suffices to find a set of numbers nm with α1 < h(nm) < α2 having nonzero

density.

We first identify a number n such that

α1 ≤ h(n) < h(n)(1 + ε) < α2 (2.2)

for some ε > 0, and then show that there exists a set of numbers m such that

1 < h(m) ≤ 1 + ε with nonzero density d. Since

h(n) ≤ h(nm) ≤ h(n)h(m),

we have the set inclusion

S = {m : h(nm) ∈ (h(n), h(n)(1+ε)]} ⊇ {m : h(n)h(m) ∈ (h(n), h(n)(1+ε)]} = D ′
1+ε

for any ε > 0. We let d = dD ′
1+ε. Then the density of the set nS will be bounded

below by d/n.

To show that an n satisfying (2.2) exists, we will again use Euler’s result that

∑
p

1

p

diverges, where the sum is over all primes p. Then we see that

∏
p

(
1 +

1

p

)

diverges by taking the logarithm and using the bound cx ≤ log(1 + x) for 0 ≤ x ≤ 2

21

2.3 Behrend’s thesis

and c ≤ log(1+1/2)/2. This bound can be seen by comparing the graphs of log(1+x)

and cx. Since for each prime p we have h(p) = 1 + 1/p, by the multiplicativity of h

we can find some finite product of primes n = Πp such that

α1 ≤ h
(∏

p
)

=
∏

h(p) =
∏ (

1 +
1

p

)
< α2.

This will be our desired n.

We will now determine a set of appropriate m. Fix an ε > 0 satisfying

h(n)(1 + ε) < α2.

Now we must establish that dD1+ε > 0. We will use a theorem of Erdős [13].

Theorem 2.7. As ε → 0+,

dD1+ε = (1 + o(1))
e−γ

log ε−1
,

where γ is the Euler-Mascheroni constant.

This establishes our claim.

2.3 Behrend’s thesis

The doctoral dissertation of Felix Behrend, published as [4], describes two methods of

bounding the density of abundant numbers. For the lower bound, Behrend identifies

a set A of 22 nondeficient numbers, from which he calculates the density dM (A) of

the multiples of members of A. Recall that A = A2, A ′ = A ′
2 , for the function h.

22

2.3 Behrend’s thesis

Since the union of these multiple sets is a subset of A ′, we have the lower bound

dM (A) ≤ dA ′. Since we have shown that dA ′ = dA , we have a lower bound for

dA , as desired. We will return to this method in more detail later.

Behrend’s upper bound method uses two main ideas. One idea is to partition the

set of non-deficient numbers according to their smallest prime factors. In Behrend’s

original paper, the small primes were limited to those up to 7, but Deléglise [8] shows

how this can be generalized to primes ≤ y for any y. In addition, since at the time

the existence of the density was not known, Behrend was confined to work with the

upper and lower densities, rather than the density itself, in his argument. We will

follow Deléglise and make use of the existence of the density as was proven in the

previous section. We will also need the existence of the densities of certain subsets of

A ′ that we will define below.

Definition 2.8. Suppose we factor a number n = uv so that the prime factors of

u are at most y and the prime factors of v are greater than y. We will call u the

y-smooth part of n. In addition, we call a number n y-smooth if every prime factor p

of n is less than or equal to y, namely if n is its own y-smooth part.

Denote by A n
y the set of non-deficient numbers that have y-smooth part n. Thus

A ′ =
⊔

P (n)≤y

A n
y ,

where the disjoint union is over all y-smooth numbers n, and P (n) is the largest prime

dividing n. We first ask whether each A n
y has a density. If n is abundant, this is easy

since A n
y is then the set of multiples mn of n with (m, Π(y)) = 1, which is a periodic

set, so by Lemma 1.3, A n
y has a density.

23

2.3 Behrend’s thesis

In the case that n is deficient, we do not have a periodic set, so we use the Erdős–

Wintner theorem with the following arithmetic function.

Definition 2.9. Let hy be the multiplicative function defined on prime powers pe as

hy(p
e) =





1, p ≤ y,

h(pe), p > y,

where h(n) = σ(n)/n. We also define the sets

Hy,α = {m : hy(m) ≥ α}

and

A n
y,α = {m ∈ Hy,α : hy(m) ≥ α, y-smooth part of m is n}.

Note that A n
y,α is a generalization of the set A n

y since A n
y = A n

y,2/h(n). To see this,

we take mn ∈ A n
y , where m contains only primes greater than y. Since (m,n) = 1,

we have

h(mn) = h(m)h(n) ≥ 2 ⇐⇒ h(m) ≥ 2

h(n)
.

With these definitions, it is clear that the Erdős–Wintner theorem applies in our

situation. The distribution function for the arithmetic function hy exists since it

exists for the related function h, and hy(p) 6= h(p) on only finitely many primes,

so it does not affect the convergence properties of the three series to be checked in

the Erdős–Wintner theorem. We conclude that dA n
y,α exists for α, and in particular

dA n
y exists.

Next we would like to express the density of the set of abundant numbers A in

24

2.3 Behrend’s thesis

terms of the densities of its subsets A n
y . As we have seen, densities are not infinitely

additive, so it is not immediately clear that summing the densities of A n
y over the

infinitely many y-smooth numbers n will give us the density of the union of the A n
y .

Nevertheless, we will be able to prove that this is the case. First we will need a

lemma.

Lemma 2.10. The sum of reciprocals of the y-smooth numbers n is

∑

P (n)≤y

1

n
=

∏
p≤y

(
1− 1

p

)−1

.

Proof. Define ep = blog x/ log pc so that ep is the largest integer exponent such that

pep ≤ x. Then

∑
n≤x

P (n)≤y

1

n
≤

∏
p≤y

(
1 +

1

p
+ · · ·+ 1

pep

)
≤

∑

n≤xπ(y)

P (n)≤y

1

n
.

Then taking limits as x →∞, we have our result.

In view of the foregoing, we will introduce the notation

F (y) :=
∏
p≤y

(
1− 1

p

)
=

ϕ(Π(y))

Π(y)
.

We can now prove the following proposition.

Proposition 2.11. Let A be the set of abundant numbers and let A n
y be the set of

nondeficient numbers with y-smooth part n. Then

dA =
∑

P (n)≤y

dA n
y

25

2.3 Behrend’s thesis

where the sum is over all y-smooth numbers n.

Proof. Recall from the discussion at the end of Section 2.2 that dA ′ = dA . We

will thus prove the statement using the set A ′ of nondeficient numbers. We split the

disjoint union according to whether n ≤ z or n > z so

A ′ =




⊔
n≤z

P (n)≤y

A n
y


 t




⊔
n>z

P (n)≤y

A n
y


 .

Using that A ′ and each A n
y have densities, the union tn>z,P (n)≤yA

n
y also has a density

since its complement in A ′ has a density. Thus

dA ′ =
∑
n≤z

P (n)≤y

dA n
y + d




⊔
n>z

P (n)≤y

A n
y


 .

We must show that the final term goes to zero as z →∞. Since A n
y ⊆ nN,

|A n
y (x)| ≤ |nN(x)| ≤ x

n
.

By the subadditivity of lim sup,

d




⊔
n>z

P (n)≤y

A n
y


 ≤

∑
n>z

P (n)≤y

dA n
y ≤

∑
n>z

P (n)≤y

1

n
.

By the previous lemma we know that the final expression is the tail of a convergent

series. Thus the tail goes to 0 as z →∞ and we have proven our result.

This proposition allows us to reduce determining the density of A to determining

26

2.3 Behrend’s thesis

the density of A n
y for each y-smooth n.

Finally, we express the sets A n
y in a way that shows explicitly the property that

all of its members are multiples of n.

Definition 2.12. Let Ay,α denote the set of numbers m such that (m, Π(y)) = 1 and

h(m) ≥ α.

Then A n
y,α is related to Ay,α by

A n
y,α = nAy,α,

and their densities are related by

dA n
y,α =

dAy,α

n
. (2.3)

With Equation (2.3) and the relationship between A n
y,α and A n, Proposition 2.11 can

be written

dA =
∑

P (n)≤y

dAy,2/h(n)

n
.

Also note that this result does not rely on the bound h(n) ≥ 2 in an essential way.

Thus we have in fact proved for any α that

dAα =
∑

P (n)≤y

dAy,α/h(n)

n
. (2.4)

We now move on to the second idea of Behrend, a primitive form of which he

credits to Schur in [3]. Behrend was able to find upper bounds for densities of Ay,α

using the moments of h, which we define as follows.

27

2.3 Behrend’s thesis

Definition 2.13. For an arithmetic function f , we define the mean of f to be

M(f) = lim
x→∞

1

x

∑
n≤x

f(n),

and the rth moment of f to be

Mr(f) = lim
x→∞

1

x

∑
n≤x

f r(n),

if these limits exist.

Note that the rth moment of f is simply the mean of f r, so any result on means

holds equally well for moments.

Next we will use the following proposition.

Proposition 2.14. Let f be an arithmetic function such that for some α0 ≥ 0, we

have f(n) ≥ α0 for all natural numbers n, and for some α > α0, let N denote the

set of n such that f(n) ≥ α. Suppose that both the mean of f and the density of N

exist. Then

dN ≤ M(f)− α0

α− α0

.

Proof. We observe that

M(f) = lim
x→∞

1

x

∑
n≤x

f(n)

= lim
x→∞

1

x




∑
n≤x

f(n)<α

f(n) +
∑
n≤x

f(n)≥α

f(n)




≥ lim
x→∞

1

x
(α0(bxc − |N (x)|) + α|N (x)|)

28

2.3 Behrend’s thesis

= (α− α0)dN + α0.

Solving for dN , we arrive at our result.

We wish to apply this proposition to our sets A n
y,α. Thus, we must prove that the

moments of hy exist. Let µ be the Möbius function. For two arithmetic functions f

and g, the Möbius inversion formula [1, p. 32] gives that

f(n) =
∑

d|n
g(d) ⇐⇒ g(n) =

∑

d|n
f(d)µ

(n

d

)
,

and we say that g is the Möbius inverse of f . Writing

h′(n) =
∑

d|n
hr

y(d)µ
(n

d

)

so that h′ is the Möbius inverse of hr
y, we have

M(hr
y) = lim

x→∞
1

x

∑
n≤x

hr
y(n)

= lim
x→∞

1

x

∑
n≤x

∑

d|n
h′(d)

= lim
x→∞

1

x

∑

d≤x

h′(d)
⌊x

d

⌋

= lim
x→∞

1

x

(∞∑

d=1

h′(d)
x

d
+ E(x)

)
,

where

E(x) =
∑

d≤x

h′(d)
(⌊x

d

⌋
− x

d

)
.

29

2.3 Behrend’s thesis

We will show that

|E(x)| ≤
∑
n≤x

|h′(n)| = o(x)

as x →∞ so that

M(hr
y) =

∞∑

d=1

h′(d)

d
,

and we will show that this last series converges.

First we note that h′ is positive. By definition we have

h′(pe) = hr
y(p

e)− hr
y(p

e−1)

and hy(p
e) ≥ hy(p

e−1) ≥ 1, so that h′ is non-negative on prime powers pe, e ≥ 1.

Thus, h′ is always non-negative. Using this, we can bound |E(x)| by

0 ≤ −E(x) ≤
∑
n≤x

h′(n) ≤
∏
p≤x

(
1 + h′(p) + h′(p2) + · · ·+ h′(pep)

)
=

∏
p≤x

hr
y(p

ep),

where as before ep = blog x/ log pc is the largest number so that pep ≤ x.

Next we estimate hr
y(p

ep). We have

1 ≤ hr
y(p

ep) <

(
1 +

1

p− 1

)r

= 1 + Or

(
1

p

)
(2.5)

where the constant implied by the big-O depends only on r uniformly over p and ep.

This leads us to the product

∏
p≤x

hr
y(p

ep) = exp
∑
p≤x

log

(
1 + Or

(
1

p

))
≤ exp

(
Or

(∑
p≤x

1

p

))
,

where we have used the bound log(1 + x) ≤ x for x > −1. Finally, using Mertens’

30

2.3 Behrend’s thesis

second theorem (see, for instance, Theorem 427, [22]),

∑
p≤x

1

p
= log log x + O(1)

for x ≥ 2, we conclude that

∑
n≤x

h′(n) ≤ (log x)cr = o(x)

as x →∞ where cr is a constant depending only on r.

We now show that
∞∑

n=1

h′(n)

n

converges. We write

∑
n≤x

h′(n)

n
≤

∏
p≤x

(
1 +

h′(p)

p
+

h′(p2)

p2
+ · · ·+ h′(pep)

pep

)
≤

∑

n≤xπ(x)

h′(n)

n
,

which on taking limits gives us

∞∑
n=1

h′(n)

n
=

∏
p

(
1 +

∞∑
i=1

h′(pi)

pi

)
.

We next check that the product converges. We use estimate (2.5) so that

h′(pi)

pi
=

hr
y(p

i)− hr
y(p

i−1)

pi
= Or

(
1

pi+1

)
,

31

2.3 Behrend’s thesis

and so

∞∑
n=1

h′(n)

n
= lim

x→∞

∏ (
1 + Or

(
1

p2

))
= exp

(
Or

(∑
p

1

p2

))
= Or(1).

We have proven the following result.

Proposition 2.15. The moments of hy exist and are given by the product over primes

Mr(hy) =
∏

p

(
1 +

∞∑
i=1

hr
y(p

i)− hr
y(p

i−1)

pi

)
.

In view of the above results, we arrive at the following result of Behrend [4].

Proposition 2.16. For each integer r ≥ 1, and α > 1, we have

dAy,α ≤ F (y)
Mr(hy)− 1

αr − 1
.

Proof. Since h is multiplicative and h(pe) > 1 for all prime powers pe, h(n) ≥ 1 for

all n. Then by the definition of hy, hy(n) ≥ 1. Now we use Proposition 2.14 taking

the function hr
y for f and α0 = 1. This gives us an upper bound for the density of

the set

Hy = {m : hy(m) ≥ 1}.

It remains to show that dHy = F (y)dAy,α. Since

Hy =
⊔

P (n)≤y

nAy,α,

32

2.3 Behrend’s thesis

we parrot the proof of Proposition 2.11. We have

d




⊔
n>z

P (n)≤y

nAy,α


 ≤

∑
n>z

P (n)≤y

dnAy,α ≤
∑
n>z

P (n)≤y

1

n
,

and since the limit of the right side is 0 as z →∞, this gives us

dHy =
∑

P (n)≤y

dnAy,α =
∑

P (n)≤y

1

n
dAy,α = F (y)dAy,α.

This establishes our result.

We will refer to this result as the Behrend moment method. In the following

chapter we will use the Behrend moment method to determine an upper bound for

dA .

33

Chapter 3

The Deléglise program

The tightest bounds on the density of abundant numbers to date are due to Deléglise

in 1998. He shows in [8] that

0.2474 < dA < 0.2480,

so that dA = 0.247 . . . , which is an improvement of two digits over the previous

record. As was indicated in the previous chapter, the ideas used in the Deléglise

program were based on the upper bound method used by Behrend. Given such a pro-

gram, some natural questions arise. First, can the program compute arbitrarily many

digits of the density given enough time? Assuming that the answer to this question is

in the affirmative, it would be expected that with the improved computational speed

of modern computers we would continue to see improvements on the bounds. How-

ever, the work up to Salié’s in 1955 was all done by hand, then by Wall’s computer

in 1972, then finally by Deléglise’s computer in 1998. Comparing this chronology to

the size of the corresponding improvements, we get the sense that progress has not

34

3.1 The Behrend-Deléglise method

come rapidly. Could it be that existing techniques are inherently slow? In this chap-

ter, we will investigate the answer to these two questions by studying the asymptotic

complexity of the Deléglise program.

3.1 The Behrend-Deléglise method

Deléglise uses as his starting point the infinite sum expression for the density of Aα

(2.4),

dAα =
∑

P (n)≤y

dAy,α/h(n)

n
,

where the sum is over all y-smooth numbers n. For a lower bound, two approximations

are made. First, since each term of the sum is positive, a lower bound may be found

by truncating the sum. Thus

dAα ≥
∑
n≤z

P (n)≤y

dAy,α/h(n)

n

for any choice of z. Second, we observe that whenever n is α-nondeficient, we have

a simple expression for Ay,α/h(n). Namely, since α/h(n) ≤ 1, any number m has

h(m) ≥ α/h(n). Thus the members of the set Ay,α/h(n) consists of all numbers m,

(m, Π(y)) = 1. Since this set is periodic, we know by Lemma 1.3 that it has density

ϕ(Π(y))/Π(y) = F (y). This allows us to write

dAα ≥ F (y)
∑
n≤z

P (n)≤y
h(n)≥α

1

n
. (3.1)

35

3.1 The Behrend-Deléglise method

Note that this lower bound expression can be computed since it consists of a finite

product and a finite sum. We will call this method of determining the lower bound

for dAα the Behrend-Deléglise lower bound method.

For an upper bound, Deléglise again uses the parameter z to split the infinite sum

into two parts, according to whether n ≤ z or not. Thus

dAα =
∑
n≤z

P (n)≤y

dAy,α/h(n)

n
+

∑
n>z

P (n)≤y

dAy,α/h(n)

n
, (3.2)

with n being y-smooth. Since the first sum is finite, we may simply bound each of

the terms of the sum from above. This is done by using the Behrend moment method

of Proposition 2.16.

Let Ãy,α be the minimum value among the function F (y) and the numbers

F (y)
Mr(hy)− 1

αr − 1

for r = 2i, i = 0, 1, 2, . . . , 12. We have dAy,α ≤ Ãy,α and we use this estimate for the

first sum in (3.2).

To bound the second sum in (3.2), we first bound dAy,α/h(n) above by F (y). Then

together with the identity

F (y)−1 =
∑

P (n)≤y

1

n
, (3.3)

we have

∑
n>z

P (n)≤y

dAy,α/h(n)

n
≤ F (y)

∑
n>z

P (n)≤y

1

n
= F (y)


F (y)−1 −

∑
n≤z

P (n)≤y

1

n


 , (3.4)

36

3.2 The Deléglise program

giving us a bound for the infinite sum that is in terms of a finite sum. Combining the

two estimates, we have the upper bound

dAα ≤
∑
n≤z

P (n)≤y

Ãy,α/h(n)

n
+ 1− F (y)

∑
n≤z

P (n)≤y

1

n
. (3.5)

Thus both the upper and lower bounds are reduced to finite calculations that can

be implemented on a computer. Analogously to the lower bound, we will call this

method of determining an upper bound for dAα the Behrend-Deléglise upper bound

method.

3.2 The Deléglise program

We now describe how Deléglise implemented the foregoing ideas into a program. The

prime array prime for primes in [2, y] and the moments array Lambda for 2ith moments

of hy for i = 0, . . . , 12 are calculated first. In order to keep track of the y-smooth

numbers n, the value of the current y-smooth number n being considered is stored in

a variable n and the array a holds the exponents of the primes of n, so that we have

access to both the value and factorization of n. We also need to keep track of the

value of σ(n). To do this, in the array Pk we hold the values of the prime powers for

each prime dividing n, the array Sk holds the values σ(pa[k]k) for each prime pk ≤ y,

and the array sigma holds the product of the first k entries in the array of Sk, so that

σ(n) can be found in the index of the prime P (n). The function init initializes the

first entry of each of these arrays to represent values corresponding to n = 1. Then a

backtracking function back is used to run through all of the y-smooth numbers ≤ z.

Deléglise’s function back is fairly intricate, we will reproduce his original C++ code

37

3.2 The Deléglise program

below and give a small example of how it works. Here N=bzc and K=π(y).

void back(int k, Long n) {

Long nextn;

nextn = n;

while (nextn <= N) {

if(a[k]) {

traite(k,nextn); // For computing bounds for density

}

if ((k < K) and (nextn*prime[k+1] <= N)) // Take care of overflow

{

a[k+1]=0;

Pk[k+1] = 1;

Sk[k+1] = 1;

sigma[k+1] = sigma[k];

back(k+1,nextn);

}

a[k]++;

nextn = nextn * prime[k];

Pk[k] *= prime[k];

}

}

Suppose N = 10 and K = 2, so that we are looking for the 3-smooth numbers

n ≤ 10. We call back(1,1). First, nextn is assigned the value 1. Next we enter the

while loop since nextn = 1 ≤ 10. Currently, a[1] = 0, so we do not enter the first

38

3.2 The Deléglise program

if block. However, since k < 2 and nextn · prime[2] = 3 ≤ 10, both conditions of

the second if statement are satisfied so we do enter the second if block. At this

point the second entries of some arrays are initialized, and then back(2,1) is called.

The process repeats, but this time we do not enter the second if block since k

is not less than 2. Instead, we move past this block and increment a[2] so that

a[2] = 1. nextn is set to 1 · 3, and Pk[2] is set to 3. This brings us to the end of

the while loop.

Since nextn = 3 < 10, we reenter the while block. This time a[2] 6= 0, so we

enter the first if block. At this point we have found our first y-smooth number,

stored as nextn = 3. The function traite, which is described in more detail below,

computes the terms of the sums needed to determine the upper and lower bounds for

the density of Aα. As before, we skip both if blocks. Then nextn is set to 9, and we

return to the beginning of the while block.

We again enter the first if block and treat 9 as another y-smooth number. We

also skip both if blocks and nextn is set to 27. However, this time when we check the

while condition, it fails, so we exit the function call for back(2,1). At this point we

return to the case k = 1 and nextn = 1. We increment a[1] to 1 and set nextn = 2.

We return to the beginning of the while loop. Now 2 is counted among the y-smooths

in the first if block and is treated accordingly. We also enter the second if block,

where we call back(2,2).

Continuing to work through this process, we next find 6 and return from back(2,2).

At the end of the while block we have k = 1 and nextn = 1. A couple more spins

around the while block let us find 4 and 8. Then we return from back(1,1). Note

that the number 1 is not included and so must be treated separately. Thus we have

39

3.2 The Deléglise program

found all 3-smooth numbers greater than 1 and not greater than 10.

For a larger example, we provide the sequence of 10-smooth numbers from 2 up

to 100 found by this algorithm. These are:

7, 49, 5, 35, 25, 3, 21, 15, 75, 9, 63, 45, 27, 81, 2, 14,

98, 10, 70, 50, 6, 42, 30, 18, 90, 54, 4, 28, 20, 100, 12, 84,

60, 36, 8, 56, 40, 24, 72, 16, 80, 48, 32, 96, 64.

We now describe the function traite, which is called whenever a y-smooth n ≤ z

is found. This is the only part of Deléglise’s code that distinguishes between calculat-

ing bounds for the density of α-abundant numbers versus abundant numbers. First, it

tests n for α-abundancy. If n is α-nondeficient, the value 1/n is added to the running

total abundsum. Otherwise, the value 1/n is added to the running total defsum. Next,

the function Ak is called. This function computes the 13 upper bounds for dAy,α/h(n)

from each of the 13 moments in Lambda using the moment upper bound method of

Proposition 2.16. Only the smallest value Ãy,α/h(n) among these upper bounds is kept

and returned. From the α-deficient value n, the value Ãy,α/h(n)/n is calculated and

added to the running total Adefsum.

After all of the y-smooth n ≤ z have been found, the program terminates after

displaying the value of F (y)·abundsum for the lower bound of dA , and the value of

Adefsum + 1− F (y)(defsum + abundsum),

which is the upper bound for dAα.

40

3.3 Asymptotic complexity

3.3 Asymptotic complexity

We are now in a position to investigate the asymptotic complexity of the Deléglise

program. We will also show that by an appropriate choice of parameters, the difference

between the upper and lower bounds has limit 0 as the parameters are increased. Note

that two parameters are involved, namely y, which bounds the smoothness of the y-

smooth numbers n, and z, which bounds the size of n. In fact, there is a third

parameter α, but this value does not affect the complexity of the program. Thus

we will determine the running time of the program as well as the difference between

upper and lower bounds in terms of y and z. This will allow us to choose optimal

values of y and z and determine how such a choice will affect the running time for

the program to calculate the value of dAα to some given precision.

3.3.1 Running time

We first determine the running time T (z, y) of the Deléglise program. The time com-

plexity of the program is estimated by counting the computational steps which con-

tribute to the running time, where the steps are defined to be arithmetical operations

such as addition, multiplication, and division, comparisons, variable assignments, and

function calls. Certain of these operations, namely addition, mutliplication, and di-

vision, are dependent on the number of bits of the numbers that are being operated

upon. In particular, as described in Section 1.1 of [25], we have on k bit numbers

that addition is O(k), while division and multiplication are O(k2). For numbers near

z, k ³ log z, so the more time consuming operations of multiplication and division

take O((log z)2) steps.

Program initialization consists of loading the precomputed arrays into memory

41

3.3 Asymptotic complexity

as well as executing the init function. Since the arrays all have length π(y), and the

operations in the init function do not depend on z or y, initialization takes O(y/ log y)

steps. After the program initializes, the function back runs through the y-smooth

numbers n ≤ z. Comparing the cases of when n is abundant and n is deficient, we

see that in either case there is a floating point calculation of 1/n and an addition

to the running total of each of the respective cases. For the case when n is deficient

there is an additional call to the function Ak, so this is the more time consuming case.

However, this function takes time O(1), as it does not depend on the values of z and

y.

Thus the time complexity of the program is

T (z, y) = O((log z)2Ψ(z, y)),

where the function Ψ(z, y) is defined to be the number of n ≤ z that are y-smooth.

3.3.2 The error estimate

We let the error in the Deléglise method be the difference between the Deléglise upper

and lower bounds, and denote the error E(z, y). By taking the difference between

(3.5) and (3.1), we determine the error to be

E(z, y) =
∑
n≤z

P (n)≤y

Ãy,α/h(n)

n
+ 1− F (y)

∑
n≤z

P (n)≤y

1

n
− F (y)

∑
n≤z

P (n)≤y
h(n)≥α

1

n

=
∑
n≤z

P (n)≤y

Ãy,α/h(n)

n
+ F (y)

∑
n>z

P (n)≤y

1

n
− F (y)

∑
n≤z

P (n)≤y
h(n)≥α

1

n

42

3.3 Asymptotic complexity

= F (y)
∑
n>z

P (n)≤y

1

n
+

∑
n≤z

P (n)≤y
h(n)<α

Ãy,α/h(n)

n
. (3.6)

We will denote the two terms in the error

E1(z, y) := F (y)
∑
n>z

P (n)≤y

1

n
(3.7)

and

E2(z, y) :=
∑
n≤z

P (n)≤y
h(n)<α

Ãy,α/h(n)

n
. (3.8)

It is easy to see that (3.7) goes to zero as z →∞ since the infinite sum

∑

P (n)≤y

1

n

converges to F (y)−1. However, we are interested in the rate at which this happens,

so we will need results on the number of y-smooth numbers n ≤ z.

3.3.3 The estimate for E1

The estimate for the sum

E1(z, y) = F (y)
∑
n>z

P (n)≤y

1

n

in the Deléglise error will depend on the relative sizes of y and z. If y is less than

exp((log log z)2), we proceed as follows. We will split the sum into two sums, according

43

3.3 Asymptotic complexity

to whether or not n is squarefree. We first estimate the sum

S(z, y) :=
∑
n>z

P (n)≤y

|µ(n)|
n

.

Writing u = (log z)/ log y, we have that u > (log z)/(log log z)2. We first show that

∑
n>z

P (n)≤y

|µ(n)|
n

≤
∑
j>u

1

j!

(∑
p≤y

1

p

)j

.

This is because, by the multinomial theorem, the expression

(∑
p≤y

1

p

)j

contains terms 1/m where m is y-smooth, squarefree, and ω(m) = j with multiplicity

j!. Here the function ω(n) is the number of distinct prime divisors of n. The bound

on the index j > u excludes the numbers m with ω(m) ≤ u since if j ≤ u, then yj ≤ z

so m ≤ z.

Next we use Mertens’ theorem [22, Theorems 427, 428] which states that

∑
p≤x

1

p
= log log x + B + o(1),

where B is the constant

B = γ +
∑

p

(
log

(
1− 1

p

)
+

1

p

)

and γ is the Euler-Mascheroni constant. From this, we deduce that we have the

44

3.3 Asymptotic complexity

inequality
∑
p≤x

1

p
≤ c log log x

for some absolute constant c > 0. For instance, from [29] we deduce that we can take

c = 19.5, valid for all x > 1, or using [10] we see that we can take c = 1.0999 for

x ≥ 106.

We may now bound

∑
j>u

1

j!

(∑
p≤y

1

p

)j

≤
∑
j>u

1

j!
(c log log y)j . (3.9)

Note that in our range where y < exp((log log z)2), that is to say log y < (log log z)2,

we have

log y log log y < 2(log log z)2 log log log z,

where the right side of the inequality is asymptotically smaller than log z. Since

u = log z/ log y, we conclude that 2c log log y ≤ u. Now for any u bounded below by

2c log log y, we have that the ratio of consecutive terms of the sum on the right side

of (3.9) is
1

(j+1)!
(c log log y)j+1

1
j!

(c log log y)j =
c log log y

j + 1
≤ c log log y

2c log log y
=

1

2
.

Thus we have

∑
j>u

1

j!
(c log log y)j ≤

∑
i≥0

1

due! (c log log y)due
1

2i
= 2

1

due! (c log log y)due.

45

3.3 Asymptotic complexity

To bound the factorial, we observe that for n ≥ 1,

log n! ≥
∫ n

1

log t dt = n log n− n + 1,

so

n! > e
(n

e

)n

. (3.10)

Thus

S(z, y) ≤
(e

u

)u

(c log log y)u+1.

Since our bounds on y and u imply log log y ≤ 2 log log log z and log log log z ¿
log log u, we may write

∑
n>z

P (n)≤y

|µ(n)|
n

¿ log log u

(
c′ log log u

u

)u

(3.11)

for some constant c′ when y < exp((log log z)2).

Now we estimate the remaining terms, namely the terms corresponding to n not

squarefree. We use the observation that a number n can be decomposed uniquely into

a square part and a squarefree part, as follows. Let m2 be the largest square divisor

of n. Then writing v = n/m2, n = m2v, we have v is squarefree, for if not, then

a square divisor d2 > 1 of v can be found and (md)2 is a square divisor of n larger

than m2, a contradiction. Then we estimate separately the sums over n according to

whether m > n1/4 or m ≤ n1/4. In the former case,

∑
n>z

P (n)≤y

m>n1/4

1

n
≤

∑

m>z1/4

1

m2

∑

P (v)≤y

1

v

46

3.3 Asymptotic complexity

¿ 1

z1/4
· log y. (3.12)

When m ≤ n1/4,

∑
n>z

P (n)≤y

m≤n1/4

1

n
≤

∑
m

1

m2

∑

P (v)≤y

v>z1/2

1

v

¿
∑

P (n)≤y

n>z1/2

|µ(n)|
n

.

Thus this sum is of greater order than (3.11), and since log z1/2

log y
= u/2, we may use

(3.11) to estimate

∑

P (n)≤y

n>z1/2

|µ(n)|
n

¿ log log(u/2)

(
c′ log log(u/2)

u/2

)u/2

¿ 1

uu/2
.

We conclude that for y < exp((log log z)2),

∑
n>z

P (n)≤y

1

n
¿ 1

uu/2
+

log y

z1/4
, (3.13)

and so

F (y)
∑
n>z

P (n)≤y

1

n
¿ 1

log y
· 1

uu/2
+

1

z1/4

when y < exp((log log z)2).

When y ≥ exp((log log z)2), namely when u ≤ (log z)/(log log z)2, we will use

published results on the behavior of the function Ψ(z, y), which counts the y-smooth

numbers n ≤ z. This function has been studied extensively; see, for instance, [26, 34,

47

3.3 Asymptotic complexity

21]. In particular, we will need an upper bound for Ψ(z, y). Since u = (log z)/ log y,

the Ψ function can be written as Ψ(z, z1/u). The work of de Bruijn related the Ψ

function for certain y and z to the Dickman ρ-function, which is defined for u ≥ 0 as

the unique continuous solution to the differential-difference equation

uρ′(u) = −ρ(u− 1), u > 1

satisfying the initial condition

ρ(u) = 1, 0 ≤ u ≤ 1.

It was proven by de Bruijn [7] that

ρ(u) = exp

{
−u

(
log u + log log u− 1− 1

log u
+

log log u

log u
+ O

(
(log log u)2

(log u)2

))}

as u →∞. Later Hildebrand [23] was able to prove the following.

Theorem 3.1 (Hildebrand). Let ε > 0. Uniformly under the condition z ≥ 2,

1 ≤ u ≤ (log z)/(log log z)5/3+ε, we have

Ψ(z, z1/u) = zρ(u)

(
1 + Oε

(
u log(u + 1)

log z

))
.

Combining the two results, we have for z ≥ 2, 1 ≤ u ≤ (log z)/(log log z)5/3+ε,

that

Ψ(z, y) ¿ zu−u.

48

3.3 Asymptotic complexity

Now we are prepared to estimate the sum

∑
n>z

P (n)≤y

1

n
(3.14)

for the case y ≥ exp((log log z)2). The strategy will be to split the sum according

to whether n is larger or smaller than the bound z0 = (exp exp
√

log y)2, since for y-

smooth n ≤ z0 the Hildebrand estimate applies, while for y-smooth n > z0 our earlier

estimate (3.13) applies since y = exp((log log
√

z0)
2) < exp((log log z0)

2). Thus we

separate the sum
∑
n>z

P (n)≤y

1

n
=

∑

n∈(z,z0]
P (n)≤y

1

n
+

∑
n>z0

P (n)≤y

1

n
. (3.15)

For the first sum above, we have

∑

n∈(z,z0]
P (n)≤y

1

n
=

∫ z0

z

dΨ(t, y)

t

=

[
Ψ(t, y)

t

]z0

z

+

∫ z0

z

Ψ(t, y)

t2
dt

=
Ψ(z0, y)

z0

− Ψ(z, y)

z
+

∫ z0

z

Ψ(t, y)

t2
dt

≤ Ψ(z0, y)

z0

+

∫ z0

z

Ψ(t, y)

t2
dt

¿ 1

uu0
0

+

∫ ∞

z

ρ(v)

t
dt

(
where u0 =

log z0

log y
and v =

log t

log y

)
,

=
1

uu0
0

+ log y

∫ ∞

u

ρ(v)dv

¿ log y

uu
.

For the second sum in (3.15), we use the estimate (3.13) so that, again taking u0 =

49

3.3 Asymptotic complexity

(log z0)/ log y, we have
∑
n>z0

P (n)≤y

1

n
¿ 1

u0
u0/2

+
log y

z
1/4
0

. (3.16)

Since

1

u0
u0/2

<
1

(u0/2)u0/2

and

1

uu
<

log y

uu

for y > e, we now wish to show that

1

(u0/2)u0/2
<

1

uu
,

or, equivalently, that u < u0/2. This in turn is equivalent to

log z <
log((exp exp

√
log y)2)

2
= exp

√
log y (3.17)

and finally,

log y > (log log z)2, (3.18)

which is the case we are considering. Thus, we conclude that

1

u
u0/2
0

¿ 1

uu
,

and that
∑
n>z

P (n)≤y

1

n
¿ log y

uu
+

log y

z
1/4
0

.

50

3.3 Asymptotic complexity

We next show that

log y

z
1/4
0

<
log y

uu
.

This amounts to showing that

uu < z
1/4
0 .

We use (3.17) so that

u =
log z

log y
<

exp
√

log y

log y
,

which gives

uu <

(
exp

√
log y

log y

) exp
√

log y
log y

.

From the definition of z0 we have

z
1/4
0 =

√
exp exp

√
log y.

Thus we wish to show that

(
exp

√
log y

log y

) exp
√

log y
log y

<

√
exp exp

√
log y.

Taking logs, we need that

exp
√

log y

log y
(
√

log y − log log y) <
1

2
exp

√
log y.

For this inequality to hold, it suffices to show that

exp
√

log y√
log y

=
exp

√
log y

log y

√
log y <

1

2
exp

√
log y.

51

3.3 Asymptotic complexity

It is clear that this inequality holds for y > e4 ≈ 54.6. We conclude that

F (y)
∑
n>z

P (n)≤y

1

n
¿ 1

uu

for y ≥ exp((log log z)2).

Now we compare the two bounds. In the case of the first bound where log y <

(log log z)2 and u > (log z)/(log log z)2, we have

1

log y
>

1

(log log z)2
>

(
(log log z)2

log z

) log z

2(log log z)2

>
1

uu/2
.

This gives us that

1

log y
· 1

uu/2
>

(
1

uu/2

)2

=
1

uu
.

Thus we see that for sufficiently large z, the second bound is preferable. Thus we will

restrict our consideration to the latter case where y ≥ exp((log log z)2) and use the

following bound.

Proposition 3.2. Let y ≥ exp((log log z)2). Then

E1(z, y) = F (y)
∑
n>z

P (n)≤y

1

n
¿ 1

uu
,

where u = (log z)/ log y.

52

3.3 Asymptotic complexity

3.3.4 The second sum

We now estimate the second sum in (3.6), namely (3.8), which we reproduce here:

E2(z, y) =
∑
n≤z

P (n)≤y
h(n)≤α

Ãy,α/h(n)

n
.

We first estimate Ãy,α. Since Ãy,α is defined as the minimum value among the mem-

bers of a set of upper bound values, we have a simple upper bound for this function

by taking the minimum value of the members of a subset of the original set of upper

bounds. In particular, we choose the trivial upper bound F (y) and the first moment

bound. In order to determine the value of u at which we switch from one bound to

the other we will use a parameter w, so that when u < 1 + 1/w we use the trivial

bound and when u ≥ 1 + 1/w we use the first moment bound.

We will also need to estimate M1(hy). Recall that M1(hy) has an Euler product,

M1(hy) =
∏

p

(
1 +

∞∑
i=1

hy(p
i)− hy(p

i−1)

pi

)
.

Since hy(p
i)− hy(p

i−1) = 1/pi when p > y and is 0 when p ≤ y, we have

M1(hy) =
∏
p>y

(
1 +

∞∑
i=1

1

p2i

)

=
∏
p>y

(
1 +

1

p2 − 1

)

= exp
∑
p>y

log

(
1 +

1

p2 − 1

)
.

We upper bound the expression log(1+1/(p2−1)) using the bound log(1+x) ≤ x

53

3.3 Asymptotic complexity

for x > 0. We wish to bound it below by

1

p2
< log

(
1 +

1

p2 − 1

)
= log

(
1

1− 1
p2

)
.

This can be seen by taking exponentials of both sides and comparing the Maclaurin

expansions term-by-term:

exp

(
1

p2

)
= 1 +

1

p2
+

1

2p4
+

1

6p6
+ · · · ,

while

1

1− 1
p2

= 1 +
1

p2
+

1

p4
+

1

p6
+ · · · .

Thus,

exp

(∑
p>y

1

p2

)
≤ M1(hy) ≤ exp

(∑
p>y

1

p2 − 1

)
,

and we conclude that

M1(hy)− 1 ∼ 1

y log y

as y → ∞. We now consider the sum over those n such that α/h(n) ∈ [1, 1 + 1/w].

Here, we use the upper bound Ãy,α ≤ F (y). We will also make use of the following

result of Erdős [15].

Theorem 3.3 (Erdős). Let N(x; a, b) denote the number of n ≤ x such that a ≤
h(n) < b. Then there is an absolute constant c such that for a ≥ 1 and x > t,

N

(
x; a, a +

1

t

)
< c

x

log t
.

54

3.3 Asymptotic complexity

We now use the above theorem and partial summation to bound the sum

∑
n≤z

1≤α/h(n)<1+1/w

1

n
.

Writing the inequality 1 ≤ α/h(n) < 1 + 1/w as

α− α

w + 1
= α

(
1 +

1

w

)−1

< h(n) ≤ α,

we have

∑
n≤z

1≤α/h(n)<1+1/w

1

n
= 1 +

∫ z

1

dN(t; α− α
w+1

, α)

t

= 1 +
N(t; α− α

w+1
, α)

t

∣∣∣∣
z

1

+

∫ z

1

N(t; α− α
w+1

, α)

t2
dt

= 1 + O

(
1

log w

)
+

∫ z

1

N(t; α− α
w+1

, α)

t2
dt

for w ≥ 2. The integral can be estimated by noting that

∫ z

1

N(t; α− α
w+1

, α)

t2
dt =

∫ z

1

O

(
t

t2 log w

)
dt = O

(
1

log w

∫ z

1

1

t
dt

)
= O

(
log z

log w

)

for w, z ≥ 2. Thus, we have

F (y)
∑
n≤z

P (n)≤y
1≤α/h(n)<1+1/w

1

n
= O

(
u

log w

)

for w, y, z ≥ 2.

55

3.3 Asymptotic complexity

For the remaining case where α/h(n) ≥ 1 + 1/w, we use the first moment upper

bound, so that

Ãy,α/h(n) ≤ F (y)
M1(hy)− 1

α
h(n)

− 1
= O

(
1

log y
· 1

y log y
· w

)
= O

(
w

y(log y)2

)

for w, y ≥ 2. Since
∑
n≤z

P (n)≤y

1

n
≤ 1

F (y)
,

we have that the sum
∑
n≤z

P (n)≤y
α/h(n)≥1+1/w

Ãy,α/h(n)

n

in this case is

O

(
w

y(log y)2

)
·

∑
n≤z

P (n)≤y

1

n
= O

(
w

F (y)y(log y)2

)
= O

(
w

y log y

)

for w, y ≥ 2. Thus the second sum has the combined estimate of

O

(
u

log w
+

w

y log y

)

for u ≥ 1 and w, y ≥ 2. Setting the two terms equal to each other, we see that we

want to choose a value of w so that

y log z ³ w log w.

If we choose w = yu, the right side is of order yu log y = y log z if y > u. With this

56

3.3 Asymptotic complexity

choice of w, we have that our sum is bounded by

∑
n≤z

P (n)≤y
h(n)≤α

Ãy,α/h(n)

n
= O

(
u

log y

)
,

for u ≥ 1, y ≥ 2, and y > u. In fact, if we simply choose w = y we arrive at the

same estimate, so the condition y > u is superfluous. We have proven the following

proposition.

Proposition 3.4. For u ≥ 1 and y ≥ 2,

∑
n≤z

P (n)≤y
h(n)≤α

Ãy,α/h(n)

n
= O

(
u

log y

)
.

3.3.5 Asymptotic complexity

We now combine the two error terms. For the first error term we have restricted

ourselves to the case y ≥ exp((log log z)2) where the bound is

1

uu
.

Collecting the two error terms, we have the error bound

O

(
1

uu
+

u

log y

)
.

57

3.3 Asymptotic complexity

We now seek a relationship between y and z which minimizes this upper bound.

Equating the terms suggests we take log y = uu+1. Taking logs, we have

log log y = u log u + log u,

while taking logs a second time we have

log log log y = log u + O(log log u).

The quotient of the two expressions gives

log log y

log log log y
= u + O

(
u log log u

log u

)
.

Solving the expression

log log y

log log log y
=

log z

log y

for z, we have

z = y
log log y

log log log y .

Thus we have the following theorem.

Theorem 3.5. With parameters y, z chosen to be z = y
log log y

log log log y so that

u =
log log y

log log log y
,

we have

E(z, y) ¿ 1

uu
.

58

3.3 Asymptotic complexity

This establishes that given the appropriate choice of y and z, the Deléglise program

can calculate the density dAα to any precision.

The time complexity of the Deléglise program is¿ (log z)2Ψ(z, y), which is asymp-

totic to z(log z)2ρ(u) as u → ∞ for our range of u. We can use this to determine a

bound on the time it would take to estimate dAα within 1/10k for any given k. Thus

taking t to be the running time of the program, and z = y
log log y

log log log y as in the theorem

above, we have

t ¿ (log z)2Ψ(z, y)

¿ z(log z)2

uu

=

(
log y log log y

log log log y

)2 (
y log log log y

log log y

) log log y
log log log y

= exp

(
O

(
log y log log y

log log log y

))
.

Next we write

1

10k
= O

(
1

uu

)
,

so that

uu ¿ 10k,

and

u log u = O(k).

Now since we have u = (log log y)/ log log log y, taking logs we have

log u = log log log y − log log log log y,

59

3.3 Asymptotic complexity

so

u log u = log log y − log log y log log log log y

log log log y
.

Thus u log u ³ log log y, so

log log y = O(k).

Then

log y = eO(k)

and

t ≤ exp exp(O(k)).

Thus we have proven the following corollary.

Corollary 3.6. Let t be the time that the Deléglise algorithm takes to determine the

density dAα to within 10−k. Then we have that

t < eeck

,

where c is an absolute constant.

Note that we have proven only an upper bound for t and not a lower bound. In

order to determine a lower bound, we would need a lower bound estimate of the error

E(z, y), which is an area for further research. However, if the corollary reflects the true

order of magnitude of the time complexity, the double exponential character of the

time bound would explain the slow progress made in the estimation of dA = dA2.

60

Chapter 4

Improvements to the Deléglise

algorithm

As we have shown in the previous chapter, although the program used by Deléglise is

guaranteed to determine the density of abundant numbers to within k decimal places

for any k, the running time may increase double-exponentially in k. In this case it

would quickly become prohibitive to determine successive digits for the density simply

by increasing the values of the parameters y and z. In this chapter, we study the

sources of error contributing to the size of the error function G(z, y) and use various

ideas to reduce the size of the error. In particular we will be able to determine the

next decimal digit for dA .

4.1 Some lower bound improvements

Let AD(w, z, y) denote the set of nondeficient numbers of the form uv, where u is a

y-smooth number with u ∈ (w, z], and v is a number relatively prime to Π(y). The

61

4.1 Some lower bound improvements

Behrend-Deléglise lower bound calculates the density of the subset AD(1, z, y). One

idea for improving the lower bound is to add to dAD(1, z, y) the density of other

subsets of A ′ that are pairwise disjoint. We will describe several such subsets and

discuss how to calculate their densities.

4.1.1 The small primes method

Consider the set 2AD(1, z, y) for 2 ≤ y. Each member is clearly nondeficient, in

fact, abundant. If we know the density of AD(1, z, y), it is easy to find the density

of 2AD(1, z, y) since we can simply multiply the former by 1/2. The only problem

is that we require the set to be disjoint from AD(1, z, y). This motivates the con-

sideration of the set 2AD(1, z, y) \ AD(1, z, y) = 2AD(z/2, z, y). Computationally,

dAD(z/2, z, y) can be found easily since this value is a subsum of the sum that cal-

culates dAD(1, z, y). Thus, it is only necessary for a program to keep track of two

sums instead of one, and test term-by-term whether or not a y-smooth number is less

than z/2, and add values to the two sums accordingly.

This idea extends to higher powers of 2. Indeed, the set 4AD(z/2, z, y) is disjoint

with each of AD(z, y) and 2AD(z/2, z, y). Moreover, note that finding the density

of 4AD(z/2, z, y) requires no extra computations aside from a division by 4 once

dAD(z/2, z, y) has been found. Continuing in this manner, we have a sequence of

sets S2
i = 2iAD(z/2, z, y) that are pairwise disjoint having known densities. Since

densities are not necessarily infinitely additive, it remains to check that

∞∑
i=0

dS2
i = dS2

0

∞∑
i=0

1

2i
= 2dS2

0 .

62

4.1 Some lower bound improvements

Thus, we must show that

d
⋃

i>k

S2
i → 0

as k →∞. This can be seen by noting that Si ⊆ 2iN, so

⋃

i>k

Si ⊆
⋃

i>k

2iN = 2k+1N.

Then

d

(⋃

i>k

S2
i

)
≤ d 2k+1N =

1

2k+1
.

This can also be seen by observing that if sets S2
i have densities and are disjoint,

then the lower densities of their union is at least the sum of their densities. Since the

limit of the sequence on the right as k →∞ is 0, this establishes the infinite density

sum expression. Note that the net increase of the new lower bound above the original

lower bound is dS2
0 .

An analogous argument involving odd members of AD(1, z, y) and powers of 3 can

also be used, giving a smaller but still noticeable improvement in the lower bound.

In this case, we begin with the odd y-smooth nondeficient numbers n ∈ (z/3, z] and

define

S3
i = 3i(Ad(z/3, z, y) \ 2N).

Repeating the argument yields

∞∑
i=0

dS3
i = dS3

0

∞∑
i=0

1

3i
=

3

2
dS3

0 .

63

4.1 Some lower bound improvements

In general, for a prime p ≤ y, we construct sets

Sp
i = pi

(
A p

D(z/p, z, y) \
⋃
q<p

qN

)

with density sum having value

dSp
0 ·

p

p− 1
.

Then for any bound y0 ≤ y, we may sum these densities over the primes p ≤ y0 to

get
∑
p≤y0

dSp
0 ·

p

p− 1
.

We will call this method of using small primes p to augment the value of the original

density the small primes method.

Using the small primes method for the single prime p = 2, we find for y = 500

and z = 1014 that

dA ≥ 0.247460540 . . . ,

which is an improvement of about 9.16 × 10−6 over the Deléglise lower bound of

0.247451383 If we also use the small primes method for the next prime p = 3, we

improve this to

dA ≥ 0.247461012 . . . ,

which improves on the small primes result for p = 2 by about 4.72× 10−7.

4.1.2 The medium primes method

For a subset S of natural numbers, we introduce the notation My(S) to denote

the set of all multiples ms of each s ∈ S, where m is a natural number such that

64

4.1 Some lower bound improvements

(m, Π(y)) = 1. Recall from Section 2.1 the notation p(n) and P (n) for the smallest

and largest prime factors of n, respectively. Consider a y-smooth number n not

greater than z and a number m such that p(m) ≥ yn, where

yn =





max{P (n), (z + 1)/n} if n > z/y,

y if n ≤ z/y.

Note that the numbers mn as defined are exactly the members of the set Myn({n}),
which has density

dMyn({n}) =
F (yn)

n
.

Lemma 4.1. The sets

Myn({n})

over all y-smooth numbers n not greater than z are disjoint.

Proof. We will show that, given a number mn such that n is y-smooth and not greater

than z, and m has p(m) ≥ yn, we can retrieve the number n, so that mn belongs only

to Myn({n}). Write mn = p1p2p3 . . . pk as a product of primes such that pi ≤ pi+1

for i = 1, 2, . . . , k− 1, and nj = p1p2 . . . pj. Thus n must be one of nj, j = 0, 1, . . . , k.

Let nj be the y-smooth part of mn. First suppose that nj > z. Then since n ≤ z

it must be that n 6= nj so yn < y and n > z/y. Let i be such that ni ≤ z < nipi+1.

Note that either n = ni or np(m) ≤ ni. But np(m) ≥ z + 1 > ni, so n = ni. Next

we suppose nj ≤ z. We will show that n cannot be greater than z/y. Suppose to the

contrary. Then yn = max{P (n), (z + 1)/n}, so z + 1 ≤ nyn ≤ np(m) ≤ nj ≤ z, a

contradiction. Thus n ≤ z/y and so n = nj.

65

4.1 Some lower bound improvements

Now if n is nondeficient, then every member of Myn({n}) is nondeficient. We will

denote by T0(z, y) the set

T0(z, y) :=
⋃
n≤z

P (n)≤y
h(n)≥2

Myn({n}).

Note that AD(z, y) ⊆ T0(z, y), so that we can expect an improvement in our lower

bound for the density of abundant numbers,

dA ≥ dT0(z, y).

We will call this the medium primes method.

Using the medium primes method, we find for z = 1014 and y = 500 that

dA ≥ 0.24747574.

This is an improvement of about 2.43 × 10−5 over the Deléglise lower bound. Com-

paring the medium primes lower bound to the small primes lower bound, we see that

the medium primes method is an improvement of about 1.47 × 10−5. Thus for our

choices of z and y, the medium primes method is preferable.

Unfortunately, the small primes and medium primes methods are incompatible.

For instance, the number n1m1 with n1 = 244 · 3 and m1 = 5 is considered in the

medium primes method for z = 1014, y = 500. However, n1m1 = 22n2 where n2 =

242 · 3 · 5. This number is considered in the small primes method since z/2 < n2 ≤ z.

Thus the two methods do not consider disjoint sets of abundant numbers so we may

not combine the two improvements.

66

4.1 Some lower bound improvements

4.1.3 The large primes method

Suppose n is y-smooth, n ≤ z, and n is deficient. Then the nondeficient multiples

nm, where (m, Π(y)) = 1, are not accounted for in the Deléglise lower bound density.

We now capture the density of subsets of these nondeficient numbers which involve

particulary simple calculations.

The single large primes method. We first consider y-smooth numbers n not

greater than z, such that

2

(
1− 1

y + 1

)
≤ h(n) < 2.

Then n is deficient, but if there is a prime p such that

y < p ≤ h(n)

2− h(n)
,

then np is nondeficient. We can see this since (n, p) = 1, so we have

h(np) = h(n)h(p) = h(n)

(
1 +

1

p

)
≥ h(n)

(
1 +

2− h(n)

h(n)

)
= 2.

Since np is nondeficient, any multiple of np is also nondeficient. However, we

wish to use these new numbers in conjunction with the members of AD(z, y) from

the original Behrend-Deléglise method. In fact, we will show that the numbers are

not members of T0(z, y) considered in the medium primes method. We must also

ensure that various choices of n and p do not conflict with each other. Thus we

restrict our attention to multiples mnp where (m, Π(p − 1)) = 1, namely the sets

67

4.1 Some lower bound improvements

Mp−1({np}), where the notation My is defined in Subsection 4.1.2. We now establish

the compatibility of all of these sets.

Lemma 4.2. For each y-smooth n not greater than z such that

2

(
1− 1

y + 1

)
≤ h(n) < 2,

and for each prime p such that

y < p ≤ h(n)

2− h(n)
,

the sets

Mp−1({np})

are pairwise disjoint. In addition, each such set is disjoint from T0(z, y).

Proof. We first show that if we fix an appropriate n and choose p, q, p < q corre-

sponding to n, then the sets Mp−1({np}) and Mq−1({nq}) are disjoint. But this is

clear since p divides all members of the first set but no members of the second set.

Now we let

Ln =
⋃

p∈(y,h(n)/(2−h(n))]

Mp−1({np})

and show that for n, n′, n 6= n′, the sets Ln and Ln′ are disjoint. This is also easy,

since the members of the first set have y-smooth part n, while the members of the

second set have y-smooth part n′.

It remains to show that each Ln is disjoint from T0(z, y). We again compare y-

smooth parts of the members of each set, which are distinguishable since those of Ln

are all deficient, while those of T0(z, y) are all nondeficient.

68

4.1 Some lower bound improvements

By this lemma, we see that we may add the densities of the sets Mp−1({np}).
These sets are periodic so we immediately have that

dMp−1(npN) =
F (p− 1)

np
.

We also define their union as

AP1 :=
⋃
n≤z

P (n)≤y

2(1− 1
y+1)≤h(n)<2

⋃

y<p≤ h(n)
2−h(n)

Mp−1({np}),

so that we have a new density expression

dAP1 =
∑
n≤z

P (n)≤y

2(1− 1
y+1)≤h(n)<2

1

n

∑

y<p≤ h(n)
2−h(n)

F (p− 1)

p
(4.1)

which may be added to the medium primes lower bound.

To simplify the calculation of the inner sum we use an observation found in

de Bruijn [6].

Lemma 4.3. For 0 < y1 < y2,

∑

p∈(y1,y2]

F (p− 1)

pF (y1)
= 1− F (y2)

F (y1)
. (4.2)

Proof. We proceed by induction on the number of primes in (y1, y2]. For the case

where there are no primes in (y1, y2], the left-hand sum is empty so is 0, while on

the right side of (4.2) we have F (y2) = F (y1) so the right side is also 0 and we have

69

4.1 Some lower bound improvements

equality. Now suppose the equation holds when there are a certain number of primes

in (y1, y2], and let (y2, y3] be an interval containing a single prime p′. Then

∑

p∈(y1,y3]

F (p− 1)

pF (y1)
=

∑

p∈(y1,y2]

F (p− 1)

pF (y1)
+

F (y2)

p′F (y1)

= 1− F (y2)

F (y1)
+

F (y2)

p′F (y1)

= 1− F (y2)

F (y1)

(
1− 1

p′

)

= 1− F (y3)

F (y1)
,

which proves the claim.

This lemma allows us to simplify the inner sum in (4.1) to

∑

y<p≤ h(n)
2−h(n)

F (p− 1)

p
= F (y)− F

(
h(n)

2− h(n)

)
.

Thus, from (4.1),

dAP1 =
∑
n≤z

P (n)≤y

2(1− 1
y+1)≤h(n)<2

1

n

(
F (y)− F

(
h(n)

2− h(n)

))
. (4.3)

We will call this the single large primes lower bound method.

To implement this sum we must calculate values of F (y) for many values of y.

Since F (y) only changes at prime values of y, we include in the initialization of the

program the calculation of an array of values F (p) for primes p up to some bound

pmax. For y > pmax, we use Dusart’s lower bound for F (y) in [10]. For future reference,

70

4.1 Some lower bound improvements

we will reproduce both the upper and lower bounds for F (y) here.

e−γ

log y

(
1− 0.2

log2 y

)
<

y≥2973
F (y) <

y>1

e−γ

log y

(
1 +

0.2

log2 y

)
. (4.4)

Then for each deficient y-smooth n not greater than z, if h(n) > 2(1− 1/(y + 1)), we

compute the appropriate term in the sum dAP1.

Using y = 500, z = 1014, and pmax = 5× 107, we find that

dAD(z, y) + dAP1 ≥ 0.247574757,

which is an improvement of about 1.23 × 10−4 over the Deléglise lower bound of

0.247451383. We also have

dT0(z, y) + dAP1 ≥ 0.247599114,

which is a gain of about 2.43 × 10−5 over the single large primes method alone, and

about 1.47× 10−4 over the Deléglise lower bound.

Remark 4.4. The idea for the medium primes method of Subsection 4.1.2 can be

extended using the idea of the single large primes method to give an additional im-

provement in the density lower bound estimate. We simply consider when a y-smooth

n, z/y < n ≤ z that is deficient can be augmented by any prime p in the interval

(yn, y] that makes np nondeficient. Then the multiples mnp such that p(m) ≥ p have

not yet been considered in the single large primes method, since the y-smooth parts

of these new numbers are greater than z, while the y-smooth parts of the numbers

considered so far in the single large primes method are not greater than z. With this

71

4.1 Some lower bound improvements

additional contribution to the density, we gain a contribution of about 1.05 × 10−7.

However, as this contribution is marginal, we will not pursue the matter any further.

The double large primes method. Further modifications can be made in the

same vein and in addition to the above calculation. The single prime method will not

apply for a deficient y-smooth number n ≤ z and a prime p > y if h(np) is deficient.

Solving the inequality h(np) < 2 for each of h(n) and p, we see that this is the case

when

h(n) < 2− 2

p + 1
and, equivalently, p >

h(n)

2− h(n)
.

Since p > y, we see that the first inequality always holds when h(n) ≤ 2− 2/(y + 1).

We will call this case I. On the other hand, even if 2− 2/(y + 1) < h(n) < 2, it may

still be true that p > h(n)/(2− h(n)). This will be case II.

In either case I or case II, there may be a prime q > p such that npq is abundant.

Then analogously as before we have for a deficient number np that the sum of these

densities can be simplified:

1

np

∑

q∈(p,h(np)/(2−h(np))]

F (q − 1)

q
=

1

np

(
F (p)− F

(
h(np)

2− h(np)

))
. (4.5)

This density represents the multiples mnpq where p(m) ≥ q.

We now note that, just as in the case of the small primes method of Subsection

4.1.1, the idea can be repeated for higher powers of p. For instance, if the number npq

defined as above is abundant, then np2q is also abundant, so repeating the previous

72

4.1 Some lower bound improvements

argument we have the density sum

1

np2

∑

q∈(p,h(np)/(2−h(np))]

F (q − 1)

q
.

These sets are disjoint from the sets involving npq since the numbers differ in their

powers of p. Moreover, we can continue to higher powers of p, giving the density sums

1

npi

∑

q∈(p,h(np)/(2−h(np))]

F (q − 1)

q

for all i ≥ 1. The sum of these densities over i ≥ 1 is a geometric series, so we simply

multiply (4.5) by a factor of p/(p− 1). The sum thus becomes

1

n(p− 1)

(
F (p)− F

(
h(np)

2− h(np)

))
. (4.6)

It can be verified that this equals the density of the union of the sets involved by

noting that the union of the tail is bounded by a geometric series and thus has limit

zero.

We now evaluate and sum over this expression for each prime p > y which is

accompanied by a second prime q > p in the interval

a < p < q ≤ h(np)

2− h(np)
,

where a = y for case I, and a = h(n)/(2− h(n)) for case II.

Noting that if we allow p to be the largest prime satisfying p ≤ h(np)/(2−h(np)),

73

4.1 Some lower bound improvements

the density expression (4.6) is 0, so we may simply sum over primes

a < p ≤ h(np)

2− h(np)
.

By solving the second inequality above for p, we find an upper bound for p independent

of p, namely

p ≤ h(n)

2− h(n)
+

√(
h(n)

2− h(n)

)2

+
h(n)

2− h(n)

=
h(n)

2− h(n)

(
1 +

√
2

h(n)

)

=

√
h(n)√

2−
√

h(n)
.

Using this bound on p, we may now determine a lower bound for h(n) in case I. We

find that

h(n) ≥ 2

(
1− 1

p + 1

)2

,

and since p > y, this gives us

h(n) ≥ 2

(
1− 1

y + 1

)2

= 2− 4

y + 1
+

2

(y + 1)2
.

We will denote by AP2I and AP2II the set of nondeficient numbers belonging to

case I and II, respectively, so that

AP2I :=
⋃
n≤z

P (n)≤y

⋃

h(n)≤2− 2
y+1

y<p<q≤ h(np)
2−h(np)

∞⋃
i=1

Mq−1({npiq})

74

4.1 Some lower bound improvements

and

AP2II :=
⋃
n≤z

P (n)≤y

⋃

2− 2
y+1

<h(n)<2
h(n)

2−h(n)
<p<q≤ h(np)

2−h(np)

∞⋃
i=1

Mq−1({npiq}).

We will in addition define AP2 := AP2I ∪ AP2II . Then dAP2 is the sum of terms

(4.6) over n and p satisfying the conditions of either case I or case II, so that

dAP2 =
∑
n≤z

P (n)≤y
b2<h(n)≤b1

1

n

∑
y<p≤a2

1

p− 1

(
F (p)− F

(
h(np)

2− h(np)

))
+

∑
n≤z

P (n)≤y
b1≤h(n)<2

1

n

∑
a1<p≤a2

1

p− 1

(
F (p)− F

(
h(np)

2− h(np)

))
, (4.7)

where ai = h(n)1/i/(21/i − h(n)1/i) and bi = 2(1− 1/(y + 1))i.

At this point another simplification may be made. Each of the inner sums in (4.7)

can be split into two sums,

∑
a<p≤a2

F (p)

p− 1
and −

∑
a<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

)
.

We now observe that by (4.2), the first sum can be written as

∑
a<p≤a2

F (p)

p− 1
=

∑
a<p≤a2

F (p− 1)

p− 1
· p− 1

p
= F (a)− F (a2).

Then we have a computationally simpler expression for dAP2, namely

75

4.1 Some lower bound improvements

dAP2 =
∑
n≤z

P (n)≤y
b2<h(n)≤b1

1

n

(
F (y)− F (a2)−

∑
y<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

))
+

∑
n≤z

P (n)≤y
b1≤h(n)<2

1

n

(
F (a1)− F (a2)−

∑
a1<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

))
. (4.8)

For computational purposes we may either limit the largest possible prime p to be

bounded by some pmax, and compute terms only when a2 ≤ pmax so that F (a2) may

be computed, or when a2 > pmax we may use explicit upper and lower bounds on

F (x) which may be found, for instance, in [10].

By using the latter approach, we can use a combined expression for dAP1 +dAP2

by adding Equations (4.3) and (4.8),

dAP1+dAP2 =
∑
n≤z

P (n)≤y
b2<h(n)<2

1

n


F (y)− F (a2)−

∑

max{y,a1}<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

)


−
∑
n≤z

P (n)≤y
b2<h(n)≤b1

1

n

∑
y<p≤a1

1

p− 1
F

(
h(np)

2− h(np)

)
. (4.9)

Finally, we note that

y < a1 ⇐⇒ h(n) > b1,

76

4.1 Some lower bound improvements

so that the second outer sum in (4.9) is in fact empty. Thus we have

dAP1 +dAP2 =
∑
n≤z

P (n)≤y
b2<h(n)<2

1

n


F (y)− F (a2)−

∑

max{y,a1}<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

)
 .

(4.10)

In practice, we must control the inner sum in (4.10) when the primes p exceed

pmax, since a2 can be much larger than pmax. This can be seen since a2 > 2a1, and a1

can become about as large as 2z since there can be n such that 2− h(n) ≈ 1/z. This

happens, for instance, when n = 2k, where k is such that 2k ≤ z < 2k+1. For this

choice of n, a1 = 2k+1− 1 > z− 1 so a2 > 2z− 2. Thus when z is large, say z = 1014,

it is impractical to sum over primes in the interval (a1, a2]. Moreover, when p is as

large as z, the contribution of the term corresponding to p is smaller than 1/z, so can

be ignored with miniscule cost.

To handle this issue, if p > pmax we bound the terms of the inner sum in (4.10)

by first observing that

h(np)

2− h(np)
≥ a2 ⇐⇒ p ≤ a2.

Thus

F

(
h(np)

2− h(np)

)
≤ F (a2).

We also use the bound

∑

p∈(a,b]

1

p− 1
=

∑

p∈(a,b]

(
1

p
+

1

p(p− 1)

)

≤
∑

p∈(a,b]

1

p
+

∑

n∈(a,b]

1

n(n− 1)

77

4.1 Some lower bound improvements

=
∑

p∈(a,b]

1

p
+

∑

n∈(a,b]

(
1

n− 1
− 1

n

)

=
∑

p∈(a,b]

1

p
+

1

a
− 1

b
.

Then we have the bound

∑

max{a1,pmax}<p≤a2

1

p− 1
F

(
h(np)

2− h(np)

)

≤ F (a2)


 ∑

max{a1,pmax}<p≤a2

1

p
+

1

max{a1, pmax} −
1

a2


 .

We can then use Dusart’s upper bound for the sum over reciprocal primes from [10]

to bound
∑

max{a1,pmax}<p≤a2

1

p
.

For future reference, we will record Dusart’s upper and lower bounds for the sum of

reciprocal primes here:

−
(

1

10 log2 x
+

4

15 log3 x

)
≤

x>1

∑
p≤x

1

p
−log log x−B ≤

x≥10372

1

10 log2 x
+

4

15 log3 x
, (4.11)

where B is defined by the sum over primes p,

B = γ +
∑

p

(
log

(
1− 1

p

)
+

1

p

)
,

and γ is Euler’s constant.

We will call this method of using primes p > y to augment the Deléglise lower

78

4.1 Some lower bound improvements

bound calculation for the density of abundant numbers the large primes method.

Recall that the single prime version of the large primes method with y = 500,

z = 1014, and pmax = 5× 107 gave us the bound

dA ≥ 0.247574758,

which is an improvement of about 1.23 × 10−4 over the Deléglise lower bound of

0.247451383. If we also use the double prime version of the large primes method, we

improve this to

dA ≥ 0.247592145,

which improves on the single prime result by about 1.73× 10−5.

By combining the medium primes method together with the large primes method,

we can further improve the lower bound given by Deléglise. In particular, we have

the following theorem.

Theorem 4.5. The density of abundant numbers can be bounded below by

dA ≥ dT0(z, y) + dAP1 + dAP2.

In particular,

dA ≥ 0.247616464,

which is an improvement of approximately 1.65 × 10−4 over the value of the lower

bound found by Deléglise.

Proof. As noted earlier, the subsets of abundant numbers considered in each of these

new methods are disjoint from AD(z, y). In fact these new sets are also disjoint to each

79

4.2 Strategies for upper bound improvements

other, as can be seen by comparing the y-smooth parts of the members. In addition,

note that for the medium primes method we consider numbers having y-smooth part

abundant, while the large primes method considers numbers having y-smooth part

deficient. This proves the lower bound expression.

Using the various methods with parameters y = 500, z = 1014, and pmax = 5×107,

we calculate the stated value for the lower bound expression.

4.2 Strategies for upper bound improvements

Recall the Behrend-Deléglise upper bound method of Section 3.1. We reproduce the

upper bound expression (3.5) here:

dAα ≤
∑
n≤z

P (n)≤y

Ãy,α/h(n)

n
+ 1− F (y)

∑
n≤z

P (n)≤y

1

n
.

The first sum involves the expression Ãy,α, which is an upper bound for the density

dAy,α. Thus one strategy for improving the Behrend-Deléglise upper bound method

is to improve the upper bound on dAy,α.

We will also investigate the upper bound analogues of the large primes method of

Subsection 4.1.3. As these methods also rely on dAy,α, the improvements in bounding

dAy,α will carry over to improvements in the upper bound version of the large primes

method as well.

80

4.2 Strategies for upper bound improvements

4.2.1 Improving bounds on dAy,α

The Behrend moment method of Proposition 2.16 bounds dAy,α by using moments

Mr(hy) of hy, as defined in Section 2.3. If we instead make explicit an asymptotic

estimate for dAy,α as α → 1+ we can directly find both upper and lower bounds for

the density. We will also modify the original moment method to find an improved

upper bound for dAy,α. This will require first calculating to many decimal digits the

moments of hy.

Using asymptotic estimates for dAy,α

Recall the definition of dAy,α from Section 2.3. The Behrend moment method does

not do well when α is near 1. In fact, for α sufficiently close to 1, the trivial bound

F (y) is used. We can see this by comparing the two bounds:

F (y) ≤ F (y)
Mr(hy)− 1

αr − 1
⇐⇒ α ≤ Mr(hy).

Since Mr(hy) increases with r, the trivial bound is better than the moment method

when 1 < α < M1(hy).

However, by studying the asymptotic behavior of dAy,α as α → 1+, we know that

the trivial bound F (y) is far from the actual value of dAy,α in the interval (1,M1(hy)).

By making the asymptotic estimate explicit, we are able to find a non-trivial upper

bound for values of α in this region.

The asymptotic behavior of the function dAα has been studied for the case α →

81

4.2 Strategies for upper bound improvements

1+. In particular, Erdős found in [13] that as ε → 0+,

1− dA1+ε = (1 + o(1))
e−γ

log ε−1
.

By using known explicit bounds on the distribution of primes, and applying these

to the proof of the asymptotic result, we can find an upper bound for dAα. An

analogous argument applies for dAy,α.

Explicit Erdős bounds

We will determine explicit upper and lower bounds on dAy,1+ε for y ≤ ε−1. Let n be

an integer with h(n) < 1 + ε. Note that n is not divisible by any prime q ≤ ε−1, since

if it were, then

h(n) ≥ h(q) = 1 +
1

q
≥ 1 + ε,

a contradiction. Thus for any prime p ≤ ε−1 we have

{n : h(n) < 1 + ε} ⊆ {n : (n, Π(ε−1)) = 1}.

This gives us the inequality of their densities,

1− dA1+ε ≤ F (ε−1).

Since

{n : (n, Π(y)) = 1, h(n) < 1 + ε} ⊆ {n : h(n) < 1 + ε},

82

4.2 Strategies for upper bound improvements

we also get the density relation

F (y)− dAy,1+ε ≤ F (ε−1). (4.12)

Note that since y ≤ ε−1, F (y) ≥ F (ε−1), and we have found a nontrivial inequality.

Solving the inequality (4.12) for dAy,1+ε gives us the lower bound for y ≤ ε−1 of

F (y)− F (ε−1) ≤ dAy,1+ε. (4.13)

We next work on determining an upper bound for dAy,1+ε when 2 ≤ y ≤ ε−1.

First we determine a property of numbers n not divisible by any primes p ≤ ε−1 such

that h(n) ≥ 1+ε. In particular we will show that such numbers n must have for some

positive integer t at least t prime factors in the interval Jt = (4t−1ε−1, 4tε−1]. We will

call this property on n property A. We will say that a number n has property At if it

has at least t prime factors in Jt for a particluar t.

Suppose n does not have property A. Then

σ(n)

n
<

n

φ(n)
=

∏

q|n

q

q − 1
<

∞∏
t=1

∏
q∈Jt

q|n

q

q − 1

< exp
∞∑

t=1

∑
q∈Jt

q|n

log

(
1 +

1

q − 1

)

< exp
∞∑

t=1

t− 1

4t−1ε−1 − 1
.

83

4.2 Strategies for upper bound improvements

Next we use the bound 2 ≤ ε−1 so that

exp
∞∑

t=1

t− 1

4t−1ε−1 − 1
< exp ε

∞∑
t=1

t− 1

4t−1

(
1 +

2ε

4t−1

)

≤ exp ε

∞∑
t=1

t− 1

4t−1

(
1 +

1

4t−1

)

= exp
116

225
ε,

using
∑
t≥1

(t− 1)αt−1 =
α

(1− α)2

for |α| < 1.

We now use the estimate

exp x ≤ 1 + 2(e1/2 − 1)x < 1 + 1.3x

for 0 ≤ x ≤ 1/2 to get

h(n) < exp
116

225
ε < 1 + 0.7ε.

This contradicts our hypothesis, establishing that property A holds for n.

Next we estimate the density of the numbers satisfying property At. Let the

integers a1, a2, . . . , al denote the numbers with exactly t prime factors from Jt. Then

the density of multiples aim with (m, Π(ε−1)) = 1 is

F (ε−1)

ai

.

Thus, the density of integers containing at least t prime factors from Jt, namely those

84

4.2 Strategies for upper bound improvements

having property At, is bounded by

F (ε−1)
l∑

i=1

1

ai

.

By the multinomial theorem, we have

l∑
i=1

1

ai

≤

(∑
p∈Jt

1
p

)t

t!
.

Calling St the set of numbers having property At, we thus have

dSt ≤ F (ε−1)

(∑
p∈Jt

1
p

)t

t!
.

Summing this inequality over all t, we assert that

d
∞⋃

t=1

St ≤ F (ε−1)
∞∑

t=1

(∑
p∈Jt

1
p

)t

t!
. (4.14)

To prove this, we must show that

lim
t0→∞

d
∞⋃

t=t0

St = 0.

In fact, since
∑
p≤x

1

p
= log log x + O(1),

85

4.2 Strategies for upper bound improvements

we have

∑
p∈Jt

1

p
= log log(4tε−1)− log log(4t−1ε−1) + O(1)

= log

(
1− log 4

log 4 + log(4t−1ε−1)

)
+ O(1)

= O(1)

for t ≥ 1. Thus the sequence
∑
p∈Jt

1

p
(4.15)

in t is bounded, say by some bound C, so

d
∞⋃

t=t0

St ≤ F (ε−1)
∞∑

t=t0

Ct

t!
.

Since the sum on the right side is the tail of the Maclaurin series for eC , which

converges, we have shown that the bound (4.14) holds.

Since the set of numbers satisfying property At for each t contains the numbers n

such that h(n) ≥ 1 + ε and (n, Π(ε−1)) = 1, we have

dAε−1,1+ε ≤ d
∞⋃

t=t0

St.

In fact, since 2 ≤ y ≤ ε−1, we have by (4.14) the upper bound

dAy,1+ε ≤ F (ε−1)
∞∑

t=1

(∑
p∈Jt

1
p

)t

t!
. (4.16)

In practice, we set up an array for the sum of reciprocal primes for primes up to

86

4.2 Strategies for upper bound improvements

pmax so that we may calculate (4.15) for t satisfying 4tε−1 < pmax. For larger t, we

may use Dusart’s upper bound (4.11) for the sum of reciprocal primes.

This gives us a bound for (4.15) for t when 4tε−1 ≥ pmax, provided 10372 ≤ pmax.

The bound is

∑
p∈Jt

1

p
< log log 4tε−1 +

1

10 log2 4tε−1
+

4

15 log3 4tε−1

− log log 4t−1ε−1 +
1

10 log2 4t−1ε−1
+

4

15 log3 4t−1ε−1

= log

(
log 4tε−1

log 4t−1ε−1

)
+

1

10 log2 4tε−1
+

4

15 log3 4tε−1

+
1

10 log2 4t−1ε−1
+

4

15 log3 4t−1ε−1

= log

(
1 +

log 4

log 4t−1ε−1

)
+

1

10 log2 4tε−1
+

4

15 log3 4tε−1

+
1

10 log2 4t−1ε−1
+

4

15 log3 4t−1ε−1
=: Ut.

From the final expression it is clear that as t increases, Ut decreases, so we can

calculate the initial terms of the sum for t up to some bound T , and then estimate

the tail of the sum as an exponential, as follows:

∞∑
t=1

(∑
q∈Jt

1
q

)t

t!
<

T∑
t=1

(∑
q∈Jt

1
q

)t

t!
+ exp(UT+1)−

T∑
t=0

U t
T+1

t!
.

Thus the density dAε−1,1+ε has upper bound

dAε−1,1+ε ≤ F (ε−1)




T∑
t=1

(∑
q∈Jt

1
q

)t

t!
+ exp(UT+1)−

T∑
t=0

U t
T+1

t!


 =: Aε−1,1+ε.

(4.17)

87

4.2 Strategies for upper bound improvements

We now use that for p ≤ ε−1,

F (p)− dAp,1+ε = F (ε−1)− dAε−1,1+ε. (4.18)

This comes from the observation that the sets which the densities represent are equal:

{n : (n, Π(p)) = 1, h(n) < 1 + ε} = {n : (n, Π(ε−1)) = 1, h(n) < 1 + ε},

which can be seen by the following observation. If n is in the left hand set, h(n) < 1+ε,

and no prime q ≤ p ≤ ε−1 can divide n since otherwise h(n) ≥ h(q) ≥ 1 + ε, a

contradiction. Thus n is in the right hand set. Likewise if n is in the right hand set,

h(n) < 1+ ε, and since p ≤ ε−1, it cannot divide n. Thus the two sets in question are

equal.

Using equation (4.18) with inequality (4.17), we arrive at the bound

dAp,1+ε = F (p)− F (ε−1) + dAε−1,1+ε

≤ F (p)− F (ε−1) + Aε−1,1+ε.

Thus, together with (4.13) and (4.17), we have the following theorem.

Theorem 4.6. For prime p ≤ ε−1,

F (p)− F (ε−1) ≤ dAp,1+ε ≤ F (p)− F (ε−1) + Aε−1,1+ε,

88

4.2 Strategies for upper bound improvements

where

Aε−1,1+ε := F (ε−1)




T∑
t=1

(∑
q∈Jt

1
q

)t

t!
+ exp(UT+1)−

T∑
t=0

U t
T+1

t!


 .

The base 4 in property A, which was taken directly from Erdős’ paper [13], is a

convenient integral value to use. However, we can also replace this base in the interval

Jt by a more optimal base. Suppose we call this base c, so that we are considering

the interval J ′t = [ct−1ε−1, ctε−1). The property corresponding to property A, which

we call property B, only holds for certain values of c. Tracing through our argument,

we find that c must satisfy the condition

2(
√

e− 1)
c(c2 + 3c + 1)

(c2 − 1)2
< 1.

The smallest we can take c is around 3.222.

In practice, the value T in Theorem 4.18 is chosen to be the largest value that can

be used given our posession of primes up to pmax. Namely, we let T be the largest t

such that ctε−1 ≤ pmax.

We will illustrate the effectiveness of this method by comparing it with the original

method at a certain value of ε. Neither the Deléglise upper bound method nor the

reduced moment upper bound method perform well when 1 + ε is near M1(hy). For

instance, each of these first moment methods gives the trivial upper bound F (y)

at 1 + ε = M1(hy). In contrast, we see a nontrivial improvement when we use the

asymptotic method of this section at this value. We find with c = 4 that

dA500,M1(h500) ≤ 0.0330949555,

89

4.2 Strategies for upper bound improvements

as opposed to the trivial bound

dA500,M1(h500) ≤ F (500) = 0.0896097368

Adjusting the value of c to 3.222, we see an improvement to

dA500,M1(h500) ≤ 0.0306312737.

We may compare this value to the corresponding lower bound,

dA500,M1(h500) ≥ F (500)− F (ε−1) = 0.0213253662.

The ζ-factor method

For Deléglise’s program, upper bounds are calculated for the moments Mr(hy) of hy

in the following manner. First the moments are expressed as Euler products, and

then upper bounds are determined for each factor, treating the case of large and

small primes separately. In general this method does not determine Mr(hy) to high

precision. By using a different approach, we will find estimates of Mr(hy) for the first

few values of r that are correct to many decimal places.

This approach, which we will call the ζ-factor method, begins with the Euler

product of Mr(hy) and accelerates the convergence of this product by expressing this

Euler product in terms of products of ζ(n) and a remainder factor which converges

quickly. The factor involving ζ(n) can be quickly computed, using, for instance, the

computer program PARI. This program calculates ζ(n) for even n using Bernoulli

numbers, while for odd n modular forms are used.

90

4.2 Strategies for upper bound improvements

Recall that the Euler product representation of Mr(hy) is given by

Mr(hy) =
∏
p>y

(
1 +

ρ(p)

p
+

ρ(p2)

p2
+ · · ·

)
=

∏
p>y

(1 + s(p, r))

where s(p, r) = ρ(p)
p

+ ρ(p2)
p2 + · · · and

ρ(pα) =

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pα

)r

−
(

1 +
1

p
+

1

p2
+ · · ·+ 1

pα−1

)r

.

As it stands, s(p, r) is an infinite series. It would be convenient to find a closed

form expression for calculations. One such closed form can be found as follows.

s(p, r) =

(
1 + 1

p

)r

− 1r

p
+

(
1 + 1

p
+ 1

p2

)r

−
(
1 + 1

p

)r

p2
+ · · ·

=
1

p

r∑
i=1

(
r

i

)(
1

p

)i

+
1

p2

r∑
i=1

(
r

i

)(
1 +

1

p

)r−i (
1

p2

)i

+ · · ·

=
∞∑

n=1

1

pn

r∑
i=1

(
r

i

) (
n−1∑
j=0

1

pj

)r−i (
1

pn

)i

=
r∑

i=1

(
r

i

) ∞∑
n=1

1

pn

(
1
pn − 1
1
p
− 1

)r−i (
1

pn

)i

=
r∑

i=1

(
r

i

)(
p

p− 1

)r−i ∞∑
n=1

(
1− 1

pn

)r−i (
1

pn

)i+1

=
r∑

i=1

(
r

i

)(
p

p− 1

)r−i ∞∑
n=1

r−i∑
j=0

(
r − i

j

)
(−1)j

(
1

pn

)j (
1

pn

)i+1

=
r∑

i=1

(
r

i

)(
p

p− 1

)r−i r−i∑
j=0

(
r − i

j

)
(−1)j

∞∑
n=1

1

pn(i+j+1)

=
r∑

i=1

(
r

i

)(
p

p− 1

)r−i r−i∑
j=0

(
r − i

j

)
(−1)j 1

pi+j+1 − 1
.

91

4.2 Strategies for upper bound improvements

Remark 4.7. Behrend in [4] gives the alternative expression

1 + s(p, r) =
pr

(p− 1)r−1

r∑
i=0

(−1)i

(
r

i

)
1

pi+1 − 1
.

We will not be using this expression in what follows.

In particular, we find for r = 1,

s(p, 1) =
1

p2 − 1
,

for r = 2,

s(p, 2) =
2p

(p− 1)(p2 − 1)
− p + 1

(p− 1)(p3 − 1)
=

2p3 + p2 − 1

(p− 1)2(p + 1)(p2 + p + 1)
,

for r = 3,

s(p, 3) =
3p6 + p4 − p3 − p + 1

(p− 1)(p3 − 1)(p4 − 1)
,

and for r = 4,

s(p, 4) =
4p11 + 2p10 + 2p9 + p8 + 3p7 − 2p6 + p5 + p3 + p− 1

(p− 1)(p3 − 1)(p4 − 1)(p5 − 1)
.

We now return our attention to the Euler products. Note that for r = 1 and

y = 1,

M1(h1) =
∏

p

(
1 +

1

p2 − 1

)
= ζ(2).

We can find the value of ζ(2) using the computer program PARI, which, in this case

amounts to calculating the value of π2/6. Then using this value as a starting point,

92

4.2 Strategies for upper bound improvements

we may calculate M1(hy) for larger values of y by dividing ζ(2) by

∏
p≤y

(
1 +

1

p2 − 1

)
,

since the latter is a finite calculation.

For the case of r = 2, we note that

1 + s(p, 2) = 1 +
2p3 + p2 − 1

(p− 1)2(p + 1)(p2 + p + 1)
= 1 +

2

p2
(1 + o(1)).

Since (
1 +

1

p2 − 1

)2

= 1 +
2

p2
(1 + o(1)),

we may factor this term out of 1 + s(p, 2), resulting in the factorization

1 +
2p3 + p2 − 1

(p− 1)2(p + 1)(p2 + p + 1)
=

(
1 +

1

p2 − 1

)2 (
1 +

c

p3
(1 + o(1))

)
.

By using a computer algebra system such as Maple, we find that c = 1. We thus

continue this factorization process by factoring out

1 +
1

p3 − 1
.

At the next step we find that what remains is the factor

1− 1

p4
,

which we recognize as a term of the Euler product for 1/ζ(4). Thus in the case r = 2,

93

4.2 Strategies for upper bound improvements

we have found that
∏

p

(1 + s(p, 2)) =
ζ(2)2ζ(3)

ζ(4)
.

We will call the above method of factoring out successive terms of ζ(s) the ζ-factor

method. By applying the ζ-factor method to the case r = 3, we find that

∏
p

(1 + s(p, 3)) =
ζ(2)3ζ(3)3

ζ(4)2

∏
p

(
1− P3(p)

Q3(p)

)
,

where P3(x) = 3x4 + x3 + 3x2 + 1 and Q3(x) = x3(x2 + 1)3. For r = 4, we find

∏
p

(1 + s(p, 4)) =
ζ(2)4ζ(3)6

ζ(4)2

∏
p

(
1− P4(p)

Q4(p)

)
,

where

P4(x) = 11x18 + 22x17 + 31x16 + 16x15 − 3x14 − 18x13 − 19x12 − 19x11

− 19x10 − 4x9 + 12x8 + 27x7 + 15x6 + 5x5 − 7x4 − 4x3 − 4x2 − x− 1

and

Q4(x) = x13(x2 + 1)3(x4 + x3 + x2 + x + 1).

Unfortunately, as is hinted by comparing P3(p)/Q3(p) and P4(p)/Q4(p), the complex-

ity of the rational functions involved appears to increase as r increases. This has the

effect of slowing down the computer calculations.

By factoring values ζ(n) for larger n from M3(h), it is observed that this process

also appears to increase the complexity of the rational function of the remainder term.

94

4.2 Strategies for upper bound improvements

By proceeding in this way we find that

M3(h) =
ζ3(2)ζ3(3)ζ6(7)ζ3(8)ζ12(11)ζ28(12)ζ105(16)ζ126(17)ζ63(20) · · ·

ζ2(4)ζ3(5)ζ(6)ζ10(9)ζ9(10)ζ6(13)ζ63(14)ζ26(15)ζ135(18)ζ360(19) · · · .

Note that the ζ-factorization appears to continue indefinitely. This is, in fact, the

case. First, we observe that the factors of ζ(n) are of the form

pn

pn − 1
.

Thus, in particular, finite products and quotients of ζ(n) have factors with numerators

and denominators of the form pa
∏

i ci(p), where ci are cyclotomic polynomials. Thus

if terms of Mr(h) are not quotients of cyclotomic polynomials in p or powers of p,

they cannot be expressed as a finite product of ζ(n). For instance, for M3(h), we

have

1 + s(p, 3) =
p4(p4 − p3 + 3p2 − p + 1)

(p− 1)(p3 − 1)(p4 − 1)
.

The polynomial in p in the numerator is not a product of cyclotomic polynomials,

which can be seen by using PARI to identify at least one complex root with norm not

equal to 1. Similarly, we find for M4(h) that 1 + s(p, 4) has in its numerator a factor

p6 + 3p4 + 4p3 + 3p2 + 1, with at least one complex root with norm not equal to 1.

Since in general we cannot hope for a terminating product of terms involving ζ(n),

we discuss how to handle a remainder factor from a ζ-factorization which is an infinite

product. In particular, this is how we will bound the values of Mr(h) in the case of

r = 3 and r = 4. We will compute the bounds by multiplying the terms over the

primes p ≤ p0 for some bound p0, and then estimate the error incurred by truncating

95

4.2 Strategies for upper bound improvements

the product at p0. We will call the tail of the product T (p0), so that

T (p0) =
∏
p>p0

(
1− Pr(p)

Qr(p)

)
.

Using the inequality log(1 + x) ≤ x which is valid for x > −1, we can upper bound

T (p0) by

exp

(
log

∏
p>p0

(
1− Pr(p)

Qr(p)

))
≤ exp

(
−

∑
p>p0

Pr(p)

Qr(p)

)
,

provided that Pr(x)/Qr(x) < 1 for x > p0. We must then find a lower bound for the

sum
∑
p>p0

Pr(p)

Qr(p)
.

Since we will subsequently want an upper bound for this sum as well, we will treat

both bounds concurrently. We will first let c−r , c+
r denote constants such that

c−r
x5
≤ Pr(x)

Qr(x)
≤ c+

r

x5

for x > p0. Such bounds exist since

Pr(x)

Qr(x)
∼ c

x5

for some integer c as x →∞. Then it remains to bound

∑
p>p0

1

p5
=

[
π(t)

t5

]∞

p0

+ 5

∫ ∞

p0

π(t)

t6
dt

= −π(p0)

p5
0

+ 5

∫ ∞

p0

π(t)

t6
dt,

96

4.2 Strategies for upper bound improvements

where the first term can be calculated directly.

To bound the integral, we will use the bounds for π(x) of Dusart [10],

π(x) ≥ x

log x

(
1 +

1

log x
+

1.8

log2 x

)
(4.19)

for x ≥ 32299 and

π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)

for x ≥ 355991.

We will show in detail only the derivation of the lower bound for

∫ ∞

p0

π(t)

t6
dt,

as the upper bound proceeds analogously.

By (4.19), we begin by writing

∫ ∞

p0

π(t)

t6
dt ≥

∫ ∞

p0

(
1

t5 log t
+

1

t5 log2 t
+

1.8

t5 log3 t

)
dt.

Since for all real s we have

∫ ∞

p0

1

t5 logs t
dt =

1

4p4
0 logs p0

− s

4

∫ ∞

p0

1

t5 logs+1 t
dt, (4.20)

we take s = 1, 2, and 3 to arrive at the bound

∫ ∞

p0

π(t)

t6
dt ≥ 1

4

1

p4
0 log p0

+
3

16

1

p4
0 log2 p0

+
57

160

1

p4
0 log3 p0

− 171

160

∫ ∞

p0

1

t5 log4 t
dt.

97

4.2 Strategies for upper bound improvements

We next need an upper bound for the integral

∫ ∞

p0

1

t5 log4 t
dt,

which we can find by noting that

∫ ∞

p0

1

t5 log4 t
dt ≤ 1

log4 p0

∫ ∞

p0

1

t5
dt =

1

4p4
0 log4 p0

. (4.21)

However, we can do slightly better: If we use the more conservative bound

∫ ∞

p0

1

t5 log4 t
dt ≤ 1

log p0

∫ ∞

p0

1

t5 log3 t
dt,

we may use Equation (4.20) for s = 3 to get

∫ ∞

p0

1

t5 log4 t
dt ≤ 1

log p0

(
1

4p4
0 log3 p0

− 3

4

∫ ∞

p0

1

t5 log4 t
dt

)
.

Solving this inequality for the integral, we arrive at the bound

∫ ∞

p0

1

t5 log4 t
dt ≤ 1

4 log p0 + 3
· 1

p4
0 log3 p0

,

which is slightly better than Inequality (4.21). Thus,

∫ ∞

p0

π(t)

t6
dt ≥ 1

4

1

p4
0 log p0

+
3

16

1

p4
0 log2 p0

+
57

160

1

p4
0 log3 p0

− 171

160

1

(4 log p0 + 3)p4
0 log3 p0

,

98

4.2 Strategies for upper bound improvements

which simplifies to

∫ ∞

p0

π(t)

t6
dt ≥ 1

4

1

p4
0 log p0

+
3

80

(
20 log p0 + 53

4 log p0 + 3

)
1

p4
0 log2 p0

.

The upper bound calculation begins in the same way, giving

∫ ∞

p0

π(t)

t6
dt ≤ 1

4

1

p4
0 log p0

+
3

16

1

p4
0 log2 p0

+
427

200

1

p4
0 log3 p0

− 1281

800

∫ ∞

p0

1

t5 log4 t
dt.

At this point the upper bound calculation uses, instead of (4.20), the inequality

∫ ∞

p0

1

t5 log4 t
dt =

1

4p4
0 log4 p0

−
∫ ∞

p0

1

t5 log5 t
dt

≥ 1

4p4
0 log4 p0

−
∫ ∞

p0

1

t5 log4 t
dt.

Now solving for our desired bound, we have

∫ ∞

p0

1

t5 log4 t
dt ≥ 1

8p4
0 log4 p0

.

Thus

∫ ∞

p0

π(t)

t6
dt ≤ 1

4

1

p4
0 log p0

+
3

16

1

p4
0 log2 p0

+
427

200

1

p4
0 log3 p0

− 1281

6400

1

p4
0 log4 p0

. (4.22)

Collecting the appropriate bounds for an upper bound for T (p0), which we will

denote T+(p0), we have

T+(p0) = exp

(
c−r

(
π(p0)

p5
0

− 5

4
· 1

p4
0 log p0

− 15

80

(
20 log p0 + 53

4 log p0 + 3

)
1

p4
0 log2 p0

))
.

99

4.2 Strategies for upper bound improvements

Next we find a lower bound T−(p0) for T (p0). To do this we must bound below

the product
∏
p>p0

(
1− Pr(p)

Qr(p)

)
= exp

(∑
p>p0

log

(
1− Pr(p)

Qr(p)

))
.

Using the power series for − log(1− x), we have the upper bound

− log(1− x) = x +
x2

2
+

x3

3
+ · · ·

≤ x +
x2

2

(
1

1− x

)

for 0 ≤ x < 1. Thus if Pr(x)/Qr(x) is decreasing and is in the interval [0, 1) for

x > p0, then we have

exp

(∑
p>p0

log

(
1− Pr(p)

Qr(p)

))
≥ exp


−

∑
p>p0

Pr(p)

Qr(p)
− 1

2
(
1− Pr(p0)

Qr(p0)

)
∑
p>p0

P 2
r (p)

Q2
r(p)


 .

Again if Pr(x)/Qr(x) is decreasing, then so is P 2(x)/Q2(x) and we have the inequality

∑
p>p0

P 2
r (p)

Q2
r(p)

≤
∫ ∞

p0

P 2
r (t)

Q2
r(t)

dt.

Using this along with our bound (4.22), we can let T−(p0) be

exp

(
c+
r

(
π(p0)

p5
0

− 5

4

1

p4
0 log p0

− 15

16

1

p4
0 log2 p0

− 427

40

1

p4
0 log3 p0

+
1281

1280

1

p4
0 log4 p0

)

− 1

2
(
1− Pr(p0)

Qr(p0)

)
∫ ∞

p0

P 2
r (t)

Q2
r(t)

dt


 .

The conditions on Pr(x)/Qr(x) are checked for each of the cases r = 3 and r = 4.

100

4.2 Strategies for upper bound improvements

It is found for both r = 3 and r = 4 that Pr(x)/Qr(x) is less than 1 for all x > 1 and

decreases for x > 0. Thus limx→∞ Pr(x)/Qr(x) = 0, and we have 0 ≤ Pr(x)/Qr(x) < 1

for x > 1. We find that for p0 = 106, we can take c−3 = 3, c+
3 = 3.000001, c−4 = 11,

and c+
4 = 11.000011. We calculate T+(p0) and T−(p0) for each r to find that

M3(h500) = 1.00082088048923772983550566523± 5.08× 10−27

and

M4(h500) = 1.00109523033158618992636631361± 1.87× 10−26.

The error in these calculations is due to using c±r /p5 as upper and lower bound

approximations to Pr(x)/Qr(x). If we needed higher precision we could improve the

bounds by proceeding as follows: By polynomial division we find, say for r = 3, that

P3(x)

Q3(x)
=

3

p5
+

1

p6
− 6

p7
− 3

p8
− · · · .

The reciprocal sums of prime powers can then be calculated as in [17], where Möbius

inversion is used to write the sum in terms of the Riemann ζ-function as

∑
p

1

ps
=

∞∑
i=1

µ(k)

k
log ζ(ks).

As we have seen, computing integral values of ζ is fast, so we can calculate successive

sums of primes over 3/p5, 1/p6, and so on to high precision.

To summarize, we find the following exact values for the moments of h500 up to

the decimal digits shown. We have also shown in parentheses the original Deléglise

101

4.2 Strategies for upper bound improvements

upper bounds for the moments M1, M2, and M4 for comparison.

M1(h500) = 1.00027326596605362343243031087± 5.6× 10−30, (1.000273298199 . . .)

M2(h500) = 1.00054689258288508841552275272± 2.7× 10−30, (1.000546957066 . . .)

M3(h500) = 1.00082088048923772983550566523± 5.08× 10−27,

M4(h500) = 1.00109523032522575502928409862± 1.88× 10−26. (1.001095359363 . . .)

To determine how these new moments affect the value of the Deléglise bound,

we make the following modifications to the Deléglise code. Recall that Deléglise’s

program uses only rth moments with r equalling powers of 2. We replace the Deléglise

values for the upper bounds of the moments for r = 1, 2, and 4 with our new values.

We also include the value of the moment for r = 3. Keeping the parameters y = 500

and z = 1014 fixed along with the Deléglise bounds for moments with r > 4, we find

the new upper bound for the density of abundant numbers

0.24796597989 . . . (0.24796600460 . . .)

(where the previous upper bound is shown in parentheses for comparison). This is

an improvement of about 2.47 × 10−8 from the Deléglise upper bound. Thus this

method does not, by itself, justify the effort required to implement it. In fact, we will

be making good use of these high-precision moment values in the next subsection.

102

4.2 Strategies for upper bound improvements

The reduced moment method

In this section we modify the Behrend moment method from Proposition 2.16 with

the goal of improving on the upper bound. The Behrend moment method can be

viewed as starting with the polynomial P (x) = xr, and using Proposition 2.14 on the

arithmetic function P (hy). By choosing a different polynomial, we could hope for an

improved upper bound. One such choice yields the following proposition.

Proposition 4.8. For each integer r ≥ 1 and α > 1, we have

dAy,α ≤ F (y)
Mr(hy − 1)

(α− 1)r
,

where

Mr(hy − 1) =
r∑

i=0

(−1)i

(
r

i

)
Mi(hy).

Proof. We repeat the argument for Proposition 2.16 using Proposition 2.14 with arith-

metic function P (hy), where P (x) = (x−1)r +1, and α0 = 1. Note that P (hy(n)) ≥ 1

for all n. Also observe that the mean of P (hy) exists and is a linear combination of

the ith moments of hy for i = 0, . . . , r.

We will call the moments Mr(hy − 1) the reduced rth moments of hy. Note that

the computation of Mr(hy − 1) for r > 1 involves negative terms. Thus the Deléglise

upper bounds for Mr(hy) cannot be used since these do not in general have sufficient

precision. Instead we use the ζ-factor method to determine the first few moments to

many decimal places, and then use these values to compute the reduced moments.

Based on our calculations of Mr(h500) for r = 1, . . . , 4, we find

M1(h500 − 1) = 2.7326596605362343243031087× 10−4 ± 5.6× 10−30,

103

4.2 Strategies for upper bound improvements

M2(h500 − 1) = 3.6065077784155066213098× 10−7 ± 1.39× 10−29,

M3(h500 − 1) = 6.3874333488622833968× 10−10 ± 5.11× 10−27,

M4(h500 − 1) = 1.37087245067671054× 10−12 ± 3.92× 10−26.

Note that, compared to the Behrend moment method, the reduced moment method

has the disadvantage that all moments Ms(hy) for s ≤ r must be known to high pre-

cision to calculate Mr(hy − 1). Thus, in practice, we may calculate Ms(hy − 1) up to

a certain point, as we have done up to r = 4.

Recall that the Deléglise bound does not do better than the trivial bound for

values near α = 1. This is true for the reduced moment method as well. We can see

this by writing

F (y)
Mr(hy − 1)

(α− 1)r
< F (y) ⇐⇒ α > r

√
Mr(hy − 1) + 1.

Thus for sufficiently small α, the asymptotic method outperforms the reduced moment

method.

Using the reduced moment method up to r = 4, we find for y = 500, z = 1014

that

dA ≤ 0.24794525016,

which improves the Deléglise upper bound by about 2.07× 10−5.

To conclude this subsection we provide a table of upper bounds for dA500(α) for

various values of α. We will compare Deléglise’s upper bounds with the asymptotic

bound and reduced moment bound. Note that Deléglise’s bounds are better for large

α, while the asymptotic bound is better for small α. The reduced moment bound

104

4.2 Strategies for upper bound improvements

performs somewhere in between. However, it should be noted that Deléglise used

very high moments for his method, while we have only used moments up to r = 4 for

the reduced moments method.

α Deléglise asymptotic reduced

1.00001 0.08961 0.04578 0.08961

1.0001 0.08961 0.03634 0.08961

1.001 0.02450 0.02195 0.02449

1.0015 0.01604 0.01859 0.01437

1.002 0.009414 DNE 0.007155

1.005 4.256× 10−5 DNE 1.966× 10−4

1.01 1.640× 10−9 DNE 1.229× 10−5

Remark 4.9. Since Deléglise’s bounds at high moments are better than the reduced

moments up to r = 4 for large α, we can improve the density upper bound by either

calculating reduced moments up to a level comparable to that of Deléglise, or simply

use the Deléglise bounds for large α. In what follows, this is not done, but rather

only the asymptotic method and the reduced moment method are used. The Deléglise

bounds will be incorporated along with the two new methods in future work.

4.2.2 Piggybacking onto the large primes method

We return our attention to the Deléglise method of bounding the density of non-

deficient numbers in Section 3.1. Recall that there are two approximations made:

bounding the densities of the sets My({n}) ∩ A for y-smooth n ≤ z, and using the

density of My({n}) for y-smooth n > z in place of only the nondeficient members of

this set. Note in the first idea that if n ≤ z is nondeficient, then the density of the

105

4.2 Strategies for upper bound improvements

set My({n}) ∩ A is in fact My({n}), and this density is accounted for in the lower

bound. Thus we can consider the part of the upper bound sum

∑
n≤z

P (n)≤y
h(n)<2

Ãy,2/h(n)

n

as “piggybacking” onto the lower bound sum

∑
n≤z

P (n)≤y
h(n)≥2

F (y)

n
. (4.23)

In this section we consider how we can analogously piggyback an upper bound density

onto each of the large primes method lower bounds. We will first examine the nonde-

ficient numbers not yet considered in the single large primes method to determine an

upper bound for the density of these numbers. We will afterwards look at how this

is adapted to include also the double large primes method.

Recall from Subsection 4.1.3 that the single large primes lower bound method

computes the density of the sets Mp−1({np}) for y-smooth deficient n ≤ z such that

p ∈ (y, h(n)/(2 − h(n))]. These sets are considered in conjunction with the sets

My({n}) for y-smooth nondeficient n ≤ z to determine a lower bound for the density

of nondeficient numbers. As before, let nm be a number such that n is y-smooth and

(m,P (y)) = 1. Then either n ≤ z or n > z. For these numbers n > z, we retain

Deléglise’s expression

1− F (y)
∑
n≤z

P (n)≤y

1

n
(4.24)

for an upper bound for the density of such nondeficient nm. If n ≤ z, then the

106

4.2 Strategies for upper bound improvements

remaining nondeficient numbers nm are such that h(n) < 2. The single large primes

method handles the case

2− 2

y + 1
< h(n) < 2 (4.25)

and

y < p ≤ h(n)

2− h(n)
.

Suppose h(n) satisfies the bounds 4.25 but p(m) > h(n)/(2− h(n)). Nondeficient

numbers in this case have not been included in the single large primes method. Thus

we must consider the density of the set

M h(n)
2−h(n)

({n}) ∩A .

But we know that

dM h(n)
2−h(n)

({n}) ∩A =
1

n
dA h(n)

2−h(n)
, 2
h(n)

.

Summing over the numbers n in this case, we arrive at the density expression

∑
n≤z

P (n)≤y

2− 2
y+1

<h(n)<2

1

n
dA h(n)

2−h(n)
, 2
h(n)

. (4.26)

We also have the case h(n) ≤ 2 − 2/(y + 1) to consider. In this case, we may

proceed as did Deléglise and use the bound

∑
n≤z

P (n)≤y

h(n)≤2− 2
y+1

1

n
dAy, 2

h(n)
. (4.27)

107

4.2 Strategies for upper bound improvements

Combining the density bounds (4.23), (4.3), (4.26), (4.27), and (4.24), we arrive

at the upper bound expression

dA ≤
∑
n≤z

P (n)≤y
h(n)≥2

F (y)

n
+

∑
n≤z

P (n)≤y

2− 2
y+1

<h(n)<2

1

n

(
F (y)− F

(
h(n)

2− h(n)

))

+
∑
n≤z

P (n)≤y

2− 2
y+1

<h(n)<2

1

n
dA h(n)

2−h(n)
, 2
h(n)

+
∑
n≤z

P (n)≤y

h(n)≤2− 2
y+1

1

n
dAy, 2

h(n)

+ 1− F (y)
∑
n≤z

P (n)≤y

1

n
. (4.28)

We will call this the single large primes upper bound method.

Remark 4.10. It may be possible to find upper bounds corresponding to the small or

medium primes lower bound methods. However, the attempts so far have not yielded

any improvements.

We next consider piggybacking onto the two large primes lower bound method.

The sets of nondeficient numbers which are not considered by the Deléglise, single

large primes, and two large primes methods fall into four categories. First, we have

the case where for y-smooth n we have n > z, which we will handle as above with

the sum (4.24).

The remaining cases involve y-smooth n ≤ z. Second, we have the case h(np1p2) <

2, where p1 and p2 are the first two primes greater than y. Such n are too deficient for

the two large primes method to apply. We will bound the density of such multiples

of n by
dAy, 2

h(n)

n
(4.29)

108

4.2 Strategies for upper bound improvements

as in the Deléglise method.

Third, we have h(n) ∈ (b2, 2) and p > a2, where b2 and a2 are defined in Subsection

4.1.3. This is the case where there are no primes q > p such that h(npq) ≥ 2.

The nondeficient numbers corresponding to this case are the multiples mn where

(m, Π(a2)) = 1 and h(mn) ≥ 2, which have density

dAa2, 2
h(n)

n
. (4.30)

Finally, we have h(n) ∈ (b2, 2), a1 < p ≤ a2, where b1 and a1 are also defined in

Subsection 4.1.3. This is the case where there are primes q > p such that h(npq) ≥ 2.

However, h(npq′) < 2 for sufficiently large primes q′, namely when q′ > h(np)/(2 −
h(np)). Repeating our argument for the single large primes upper bound method, we

find that the corresponding density is

dA h(np)
2−h(np)

, 2
h(np)

np
.

In fact, we must account for powers of primes p as well. We do this by using the

upper bound
∞∑
i=1

dA h(npi)

2−h(npi)
, 2

h(npi)

npi
≤

dA h(np)
2−h(np)

, 2
h(n)h(p∞)

n(p− 1)
, (4.31)

due to the monotonicity of dAy,α in each of y and α. Here h(p∞) is shorthand for

limi→∞ h(pi) = p/(p − 1). The infinite sum can be seen to represent the density of

the corresponding infinite union as before in Subsection 4.1.3 by convergence of the

geometric series.

Thus piggybacking onto the two large primes lower bound method we have the

109

4.2 Strategies for upper bound improvements

combined density from (4.24), (4.29), (4.30), and (4.31), namely

∑
n≤z

P (n)≤y
h(n)<2/h(p1p2)

dAy, 2
h(n)

n

+
∑
n≤z

P (n)≤y
h(n)∈[2/h(p1p2),2)

1

n


dAa2, 2

h(n)
+

∑

max{y,a1}<p≤a2

dA h(np)
2−h(np)

, 2
h(n)h(p∞)

p− 1




+ 1− F (y)
∑
n≤z

P (n)≤y

1

n
. (4.32)

Thus we have found what we call the two large primes upper bound by adding (4.10)

and (4.32).

Proposition 4.11. The density of abundant numbers is bounded above by

dA ≤
∑
n≤z

P (n)≤y
b2<h(n)<2

1

n

(
F (y)− F (a2) + dAa2, 2

h(n)

)

−
∑
n≤z

P (n)≤y
b2<h(n)<2

1

n

∑

max{y,a1}<p≤a2




F
(

h(np)
2−h(np)

)
− dA h(np)

2−h(np)
, 2
h(n)h(p∞)

p− 1




+
∑
n≤z

P (n)≤y
h(n)<2/h(p1p2)

dAy, 2
h(n)

n
+ 1− F (y)

∑
n≤z

P (n)≤y
h(n)<2

1

n
,

where ai = i
√

h(n)/(i
√

2− i
√

h(n)) and bi = 2(1− 1/(y + 1))i.

110

4.2 Strategies for upper bound improvements

Computational issues

We now address several computational issues that arise due to the size of the primes

required, which may exceed our bound pmax.

To begin, we will address the inner sum in the density bound of Proposition 4.11.

When pmax < a2, we bound the sum

∑

max{pmax,a1}<p≤a2




F
(

h(np)
2−h(np)

)
− dA h(np)

2−h(np)
, 2
h(n)h(p∞)

p− 1




analogously as in the corresponding lower bound method. Namely, we replace the

expression F (h(np)/(2− h(np)) by its minimum possible value F (a2), and note that

dAy,α increases when y decreases, and also increases when α decreases. Thus we

replace the expressions

h(np)

2− h(np)
and

2

h(n)h(p∞)

by their smallest possible values for p ∈ (max{pmax, a1}, a2]. These are

h(n)
(
1 + 1

a2

)

2− h(n)
(
1 + 1

a2

) and
2

h(n)
(
1 + 1

pmax

) ,

respectively. Then it remains to bound

∑

p∈(pmax,a2]

1

p− 1
.

111

4.2 Strategies for upper bound improvements

We do this by taking

1

p− 1
≤ 1

p

(
1 +

1

pmax − 1

)
,

and then the sum
∑

p∈(pmax,a2]

1

p

is bounded by using Dusart’s bounds (4.11) on the sum of reciprocal primes.

Computing reduced moments Mr(hy − 1)

In order to implement the foregoing methods into a computer program, it would be

useful to have available upper bounds for dAy,α for large values of y. We next discuss

two ways in which these can be found. The first discusses the strategy for y that are

small enough so that all primes up to some pmax can be computed, in which case we

will be using the reduced moment method. This means that we need upper bounds

on the reduced moments Mr(hy − 1) for y ≤ pmax. The second method addresses the

case where y > pmax, in which case we will simply use an estimate for the Deléglise

first moment upper bound expression.

Calculating Mr(hy − 1) for y ≤ pmax. One way to find the values Mr(hy − 1) is

to let PARI do all the calculations beforehand and store the values in a data file for

the program to access. This approach works, but it would be preferable not to have

to store these values but rather to compute them at runtime, since the size of a file

storing the rth moments up to rmax would be on the order of 10 · rmax ·π(pmax) bytes,

assuming a long double precision float takes 10 bytes. This is about 120 megabytes

for our choice of rmax = 4 and pmax = 5 × 107. However, we must be careful when

implementing a computation for Mr(hy − 1). We will illustrate the issue first for the

112

4.2 Strategies for upper bound improvements

case Mr(hy).

A problem which arises when storing values of Mr(hy) on a computer is that for

large y, the values of Mr(hy) behave like 1 + ε for some small ε > 0. For instance,

we have seen that the first few moments of h500 are of the form 1.000∗. In this case

we would prefer to store the value Mr(hy)− 1, as this would allow us to keep higher

precision. In fact, this is precisely how Deléglise stores the moments in his program.

This point is underscored when we try to compute values of Mr(hy − 1). Recall

that the fourth reduced moment has a value of about

M4(h500 − 1) = 1.371× 10−12.

If we were to attempt to calculate this moment directly from the moments Mr(h500),

r = 1, . . . , 4, then even with long double precision which allows 19 digits to be stored,

we would end up with only 7 significant digits for M4(hy − 1). This would only get

worse for larger values of r.

We first prove the stated behavior of Mr(y) and then show how the issue of

calculating Mr(hy − 1) may be solved.

The behavior of Mr(hy). In order to understand the behavior of Mr(hy) as y

increases, we first estimate ρy(p
k, r) := hy(p

k)r−hy(p
k−1)r. By the identity (ar−br) =

(a− b)(ar−1 + · · ·+ br−1) and the observation that hy(p
k) = hy(p

k−1)+ 1
pk when p > y,

we have

ρy(p
k, r) = hy(p

k)r − hy(p
k−1)r

= (hy(p
k)− hy(p

k−1))(hy(p
k)r−1 + · · ·+ hy(p

k−1)r−1)

113

4.2 Strategies for upper bound improvements

≤ 1

pk
· rhy(p

k)r−1

<
r

pk
·
(

p

p− 1

)r−1

≤ r

pk
·
(

1 +
1

y − 1

)r−1

.

Thus s(p, r) = ρ(p)
p

+ ρ(p2)
p2 + · · · , which we defined in subsection 4.2.1, is bounded by

r

(
1 +

1

y − 1

)r−1 ∞∑

k=1

1

p2k
=

Cr,y

p2 − 1
,

where Cr,y := r(1 + 1/(y − 1))r−1 only depends on r and y. Note that as y → ∞,

Cr,y → r, and also that
∑

1
p2−1

converges. Thus,

Mr(hy) ≤
∏
p>y

(
1 +

Cr,y

p2 − 1

)
≤ exp

(
Cr,y

∑
p>y

1

p2 − 1

)
,

and writing Lr(hy) := Mr(hy)− 1, we have Lr(hy) → 0 as y →∞. In particular, we

find that

Lr(hy) =

(
r +

r(r − 1)

y
+ O

(
r(r − 1)

y2

))(
1

y log y
+ O

(
1

y log2 y

))

=
r

y log y
+ Or

(
1

y log2 y

)
. (4.33)

Thus from a computational standpoint, we see that it is preferable to work with

the values of Lr(hy) rather than Mr(hy) since in general Mr(hy) consists of a 1 followed

by a string of 0’s and then the digits of Lr(hy).

If we are to work with Lr(hy), we need an expression for finding Mr(hy − 1) in

114

4.2 Strategies for upper bound improvements

terms of Lr(hy). This is easily found by the following calculation:

Mr(hy − 1) =
r∑

i=0

(
r

i

)
(−1)r−iMi(hy)

=
r∑

i=0

(
r

i

)
(−1)r−i(Li(hy) + 1)

=
r∑

i=0

(
r

i

)
(−1)r−iLi(hy) + 0r

=
r∑

i=1

(
r

i

)
(−1)r−iLi(hy) + 0r,

since
∑r

i=0

(
r
i

)
(−1)r−i = (1 − 1)r = 0r, and for the purposes of inversion we define

L0(hy) = 0, and adopt the convention that 00 = 1.

Computing Lr(hy). In order to compute the value Lr(hy) for a particular y, we

can begin with the value of Lr(hy1) for a large value y1, y1 > y. Then by using a

relation between Lr(hpi
) and Lr(hpi−1

), we can iteratively calculate Lr(hy) for any

value y < y1. We will now find such an iterative relation.

We first observe that

1 + Lr(hpi−1
) = Mr(hpi−1

)

= Mr(hpi
)(1 + s(pi, r))

= (1 + Lr(hpi
))(1 + s(pi, r))

= 1 + Lr(hpi
) + s(pi, r) + Lr(hpi

)s(pi, r).

Thus

Lr(hpi−1
) = Lr(hpi

) + s(pi, r) + Lr(hpi
)s(pi, r), (4.34)

115

4.2 Strategies for upper bound improvements

so that the calculation of Lr(hy) no longer depends on Mr(hy).

A further refinement. As we have seen, computing Lr(hy) directly allows us to

use expressions of size approximately r/y log y. In fact, for higher moments we can

do better. For instance, for r = 2, M2(hy − 1) = L2(hy)− 2L1(hy), which is

O

(
1

y log2 y

)

by (4.33).

As a concrete example we have calculated for y = 5×107 that L1(hy) ≈ 1.07×10−9

and L2(hy) ≈ 2.14× 10−9, while

L2(hy)− 2L1(hy) ≈ 1.212536× 10−17.

To take advantage of this situation we simply iterate the strategy used to solve the

initial moment calculation problem by again letting the contributions from the main

terms of Lr(hy) cancel while keeping the remainder terms. Just as we have defined

Lr(hy) as the secondary term in Mr(hy), we will define Kr(hy) = Mr(hy − 1) where

we view Kr(hy) as a smaller order term of Lr(hy), so that

Kr(hy) :=
r∑

i=1

(
r

i

)
(−1)r−iLi(hy) (4.35)

for integers r > 0, and K0(hy) = 0. (Note that for r = 1, K1(hy) coincides with

116

4.2 Strategies for upper bound improvements

L1(hy).) By (4.34) and (4.35), we have

Kr(hpi−1
) =

r∑
j=1

(
r

j

)
(−1)r−jLj(hpi−1

)

=
r∑

j=1

(
r

j

)
(−1)r−j(Lj(hpi

) + s(pi, j) + Lj(hpi
)s(pi, j))

= Kr(hpi
) +

r∑
j=1

(
r

j

)
(−1)r−js(pi, j) +

r∑
j=1

(
r

j

)
(−1)r−jLj(hpi

)s(pi, j).

To remove the terms with Lj(hpi
) in the final sum above we note that by inversion

(see, for instance, [20, p. 192–3]) we have

Kr(hpi
) =

r∑
j=0

(
r

j

)
(−1)r−jLj(hpi

) ⇐⇒ Lr(hpi
) =

r∑
j=0

(
r

j

)
Kj(hpi

),

where we have used the observation that M0(hy) = 1 and so L0(hy) = 0. Thus

r∑
j=1

(
r

j

)
(−1)r−jLj(hpi

)s(pi, j) =
r∑

j=1

(
r

j

)
(−1)r−js(pi, j)

j∑

k=1

(
j

k

)
Kk(hpi

)

=
r∑

k=1

(
r

k

)
Kk(hpi

)
r∑

j=1

(
r − k

j − k

)
(−1)r−js(pi, j),

where we have used that K0(hpi
) = 0 and the convention that

(
n
k

)
= 0 when k > n.

We conclude that

Kr(hpi−1
)−Kr(hpi

) =

r∑
j=1

(
r

j

)
(−1)r−js(pi, j) +

r∑

k=1

(
r

k

)
Kk(hpi

)
r∑

j=1

(
r − k

j − k

)
(−1)r−js(pi, j).

By using this equation we are able to calculate values for Kr(hy), r = 1, . . . , 4,

117

4.2 Strategies for upper bound improvements

beginning from y = 5 × 107 down to y = 0 while preserving high precision. As

an example, for our fourth moment calculation we begin with the value of K4(hy),

y = 5× 107, calculated by PARI using the ζ-factor method,

3.29594356911638569265174956894439063553× 10−33.

Calculating all values of K4(hy) down to y = 0, we arrive at the value

1.58798408739662063,

which agrees with the value found using the ζ-factor method by PARI to the given

number of digits.

Bounding dAy,α for y > pmax. In the case that y > pmax, we will use the first

moment Deléglise upper bound method. Thus, we need an upper bound approxima-

tion for M(hy), as well as an upper bound approximation for F (y). In addition, the

large primes upper bound method requires bounding −F (y) for large y, so we will

also need a lower bound for F (y).

In fact, we can approximate these values using partial summation and Dusart’s

bounds for π(y) and F (y), (4.19), (4.20), and (4.4).

It remains to bound above M(hy). Since

M(hy) =
∏
p>y

(
1− 1

p2

)−1

= exp

(
−

∑
p>y

log

(
1− 1

p2

))
= exp

∑
p>y

∞∑

k=1

1

kp2k
,

we seek an upper bound for the double sum in the exponent. We can bound the inner

118

4.2 Strategies for upper bound improvements

sum from above by writing

∞∑

k=1

1

kp2k
≤

∞∑

k=1

1

p2k
=

1

p2 − 1
.

Then by partial summation and Dusart’s bounds [10]

y

log y

(
1 +

1

log x

)
≤

x≥599
π(y) ≤

y>1

y

log y

(
1 +

1.2762

log x

)

for π(y), which are valid for y > 599, we have

∑
p>y

1

p2 − 1
=

[
π(t)

t2 − 1

]∞

y

+ 2

∫ ∞

y

π(t)

t3
dt

≤ − y

(y2 − 1) log y

(
1 +

1

log y

)
+ 2

∫ ∞

y

1

t2 log t

(
1 +

1.2762

log t

)
dt.

Now by integration by parts we have that

∫ ∞

y

1

t2 log t
=

[
− 1

t log t

]∞

y

−
∫ ∞

y

dt

t2 log2 t
=

1

y log y
−

∫ ∞

y

dt

t2 log2 t
.

Thus,

∑
p>y

1

p2 − 1
≤ − 1

y log y

(
1 +

1

log y

)
+ 2

(
1

y log y
−

∫ ∞

y

dt

t2 log2 t

)
+ 2

∫ ∞

y

1.2762

t2 log2 t
dt

=
1

y log y
− 1

y log2 y
+

∫ ∞

y

0.5524

t2 log2 t
dt

=
1

y log y
− 1

y log2 y
+

1

log2 y

∫ ∞

y

0.5524

t2
dt

=
1

y log y
− 0.4476

y log2 y
.

119

4.2 Strategies for upper bound improvements

Thus,

M(hy) ≤ exp

(
1

y log y
− 0.4476

y log2 y

)
.

Note that since the argument in the exponential is small, the value after taking the

exponential is about 1 greater than the argument. In fact, we are actually interested

in the value M(hy)−1. We can thus attempt to simplify this expression by removing

the exponential. Since

ex − 1 ≤ x + x2

for x ≤ 3/4, and

1

y log y
≤ 4

3

for y ≥ 2, we end up with the following bound.

Proposition 4.12. When y > 599, we have the explicit upper bound

M(hy)− 1 ≤ 1

y log y
− 0.4476

y log2 y
+

(
1

y log y
− 0.4476

y log2 y

)2

.

Large prime upper bound results. With upper bounds for dAy,α for large y

in hand, we are now prepared to implement the large primes upper bound method.

Using the single large primes upper bound method, we find for y = 500, z = 1014,

and ymax = 5× 107, that

dA ≤ 0.247731321 . . . ,

which is an improvement of about 2.14 × 10−4 over the Deléglise upper bound of

0.247945250 With the two large prime upper bound method, this improves to

dA ≤ 0.247665510 . . . ,

120

4.3 The hybrid algorithm

which is an additional improvement over the single prime calculation of about 6.58×
10−5.

4.3 The hybrid algorithm

We will refer to the combination of all of the ideas presented in this chapter, with

the exception of the small primes method, as the hybrid algorithm. Using this hybrid

algorithm, we arrive at the following upper and lower bounds for dA , where y = 500,

z = 1014, and pmax = 5× 107:

0.247616464 ≤ dA ≤ 0.247656571.

The difference between the upper and lower bounds is about 4.01× 10−5.

For comparison, we display the original Deléglise bounds,

0.247451383 ≤ dA ≤ 0.247945251,

for which the difference between the upper and lower bounds is about 4.93× 10−4.

We summarize our results in a table.

121

4.3 The hybrid algorithm

Method Lower Upper Difference

Deléglise 0.2474513 0.2479453 4.94× 10−4

Small 2 0.2474605 " 4.85× 10−4

Small 2, 3 0.2474610 " 4.84× 10−4

Medium 0.2474757 " 4.70× 10−4

1 large 0.2475747 0.2477314 1.57× 10−4

1 lg, med 0.2475991 " 1.32× 10−4

2 large 0.2475921 0.2476566 6.45× 10−5

2 lg, med 0.2476164 " 4.02× 10−5

If we now increase the value of z, we expect improved bounds for the density of

abundants. Choosing z = 1015 and y = 500, we first use Deléglise’s original algorithm

for comparison. This gives the bounds

0.2474678 < dA < 0.2479570,

where the difference between the upper and lower bounds is about 4.89×10−4. Thus,

we see that simply choosing a larger value for z in the Deléglise program does not

yield a comparable improvement to the hybrid algorithm at z = 1014.

If we use the hybrid algorithm again with z = 1015, y = 500, and pmax = 5× 107,

we find the following bounds.

Theorem 4.13. The density of the set of abundant numbers has the bounds

0.2476171 < dA < 0.2476475,

122

4.3 The hybrid algorithm

with a difference between the upper and lower bounds of 3.04× 10−5. Thus,

dA = 0.2476

Finally, we include below the C++ code used to compute the results of the hybrid

method. The code is based on Deléglise’s, and is in fact a modification of his original

code which he has generously provided. In particular, his backtracking algorithm to

identify y-smooth numbers up to z has been left unchanged.

// abund11.cc

// Version 1.1 - the hybrid algorithm

#include<iostream>

#include<fstream>

#include<iomanip>

#include<cmath>

using namespace std;

typedef long long Long;

const Long PBD = 50000000; // upper bound for calculated primes

const Long KBD = 3001134; // pi(PBD)

// e^{-\gamma}

const long double eneggam = 0.5614594835668851698241432148;

123

4.3 The hybrid algorithm

long double F[KBD+1]; // F(k)

// upper and lower bounds for F(k)

long double Fupper(Long);

long double Flower(Long);

// upper and lower bounds for A(1/(u-1), k)

long double Aupper(long double, Long);

long double Alower(long double, Long);

// array for asymptotic method

long double AKarr[KBD+1];

long double sumpinv[KBD+1]; // sum of reciprocal primes up to p_k

// upper and lower bounds for sum of reciprocal primes up to x

long double pinvupper(long double x);

long double pinvlower(long double x);

Long pi[PBD+1]; // pi(x)

// upper and lower bounds for pi(x)

Long piupper(long double x);

Long pilower(long double x);

Long prime[KBD+1]; // p_k

124

4.3 The hybrid algorithm

// upper and lower bounds for p_k

Long primeupper(Long k);

Long primelower(Long k);

long double L[5][KBD+1]; // reduced moments

// default values for K, Y, N

int K=95;

Long Y=500;

Long N=1000;

long double Fy; // F(Y)

// bounds for large primes method

long double b1=2.0*(1.0-1.0/(Y+1.0));

long double b2=b1*(1.0-1.0/(Y+1.0));

long double suminv_nab=1.0; // backtracking doesn’t include n=1.

// double primes sum

long double p2uppersum=0.0;

long double p2lowersum=0.0;

// small primes sum

125

4.3 The hybrid algorithm

long double suminv_ab1=0.0; // n<=z/2

long double suminv_ab2=0.0; // n> z/2

long double suminv_ab3=0.0; // n> z/3 and odd

// medium primes sum

long double suminv_med=0.0;

// stacks used by backtracking

Long a[KBD+1]; // a[k] = exponent of prime(k)

Long Pk[KBD+1]; //Pk[k] = prime(k)^a[k]

Long Sk[KBD+1]; // Sk[k] = sum(prime(k), j=0..k)

Long sigma[KBD+1]; // sigma[k] = prod(Sk[j], j=1..k)

// string to Long converter

Long atoll(char *str)

{

Long zval;

zval = 0;

for (; *str; str++)

{

zval = 10*zval + (*str - ’0’);

}

return zval;

126

4.3 The hybrid algorithm

}

void traite(int k, Long n)

{

long double invn=1.0/n;

Sk[k] += Pk[k];

sigma[k] = sigma[k-1]*Sk[k];

long double sigmak=sigma[k];

if (sigmak >= 2 * n) // This n is nondeficient

{

// small primes method

if(n*2<=N)

suminv_ab1+=invn;

else

suminv_ab2+=invn;

if(a[1]==0 && n*3>N)

suminv_ab3+=invn;

// medium primes method

if(n*Y<=N)

{

suminv_med+=invn*Fy;

}

127

4.3 The hybrid algorithm

else

{

suminv_med+=invn*Flower((prime[k]*n>N)?k:piupper

((Long)ceil(N*invn)));// max of k and pi(z/n).

}

}

else // This n is deficient

{

suminv_nab+=invn;

// double large prime method

long double a1 = ((long double)sigmak)/(2.0 * n-sigmak);

long double a2 = a1+sqrt(a1*(1.0+a1));

long double p2lower=0.0;

long double p2upper=0.0;

if(sigmak>b2*n)

{

Long i;

Long piua1=piupper(a1);

Long pila1=pilower(a1);

Long piua2=piupper(a2);

Long pila2=pilower(a2);

if(K<piua2)

128

4.3 The hybrid algorithm

{

p2lower+=Fy-Fupper(pila2);

p2upper+=Fy-Flower(piua2)+Aupper(a1, pila2);

for(i=((K+1<pila1)?pila1:K+1);

i<=((KBD<piua2)?KBD:piua2);i++)

{

long double pl=(long double)primelower(i);

long double pu=(long double)primeupper(i);

Long hnpl=(Long)floor(sigmak*(pu+1.0)

/(2.0*n*pu-sigmak*(pu+1.0)));

if(hnpl>0)

{

p2lower -= Fupper(pilower(hnpl))/(pl-1.0);

}

}

for(i=((K+1<piua1)?piua1:K+1);

i<=((KBD<pila2)?KBD:pila2);i++)

{

long double pl=(long double)primelower(i);

long double pu=(long double)primeupper(i);

Long hnpl=(Long)floor(sigmak*(pu+1.0)

/(2.0*n*pu-sigmak*(pu+1.0)));

129

4.3 The hybrid algorithm

Long hnpu=(Long)floor(sigmak*(pl+1.0)

/(2.0*n*pl-sigmak*(pl+1.0)));

if(hnpu>0)

{

p2upper-=(Flower(piupper(hnpu))

-Aupper(hnpu,pilower(hnpl)))/(pu-1.0);

}

}

if(KBD<piua2)

{

long double p=(long double) PBD;

if(KBD<pila1)

p2lower-=Fupper(pila2)*(pinvupper(a2)

-pinvlower(a1)+1.0/a1-1.0/a2);

else

p2lower-=Fupper(pila2)*(pinvupper(a2)

-sumpinv[KBD]+1.0/p-1.0/a2);

p2upper-=(Flower(piua2)-Aupper(1.0/(2.0*n/sigmak*p/

(p+1.0)-1.0),pilower(sigmak*(1.0+1.0/a2)/(2.0*n

-sigmak*(1.0+1.0/a2)))))*(pinvlower(a2)-sumpinv

[KBD])*(1.0+1.0/((longdouble)p-1.0));

}

130

4.3 The hybrid algorithm

}

}

p2lowersum+=p2lower*invn;

p2uppersum+=p2upper*invn;

if(sigmak*(1.0+1.0/prime[K+1])*(1.0+1.0/prime[K+2])<2*n)

{

p2uppersum+=Aupper(a1,K)*invn;

}

}

}

// Backtracking computes all p_K-smooth integers up to n (except 1)

void back(int k, Long n) {

Long nextn;

nextn = n;

while (nextn <= N)

{

if(a[k])

{

traite(k,nextn); // For computing bounds for A(2)

}

if ((k < K) and (nextn*prime[k+1] <= N))

//Take care of overflow

131

4.3 The hybrid algorithm

{

a[k+1]=0;

Pk[k+1] = 1;

Sk[k+1] = 1;

sigma[k+1] = sigma[k];

back(k+1,nextn);

}

a[k]++;

nextn = nextn * prime[k];

Pk[k] *= prime[k];

}

}

void initprimes()

{

// identify primes up to PBD:

long int rootn;

rootn=(long int)floor(sqrt(PBD));

int interval[rootn+1];

long int i;

interval[0]=0;

interval[1]=0;

132

4.3 The hybrid algorithm

for(i=2; i<=rootn; i++)

{

interval[i]=1;

}

long int ptr=2;

while(ptr<=floor(sqrt(rootn)))

{

for(i=ptr*ptr; i<=rootn; i=i+ptr)

{

interval[i]=0;

}

ptr++;

while(interval[ptr]==0) ptr++;

}

long int pcount=0;

long int count;

for(i=0; i<=rootn; i++)

{

pcount+=interval[i];

133

4.3 The hybrid algorithm

}

// fill prime[], pi[], and F[] arrays:

prime[0]=1;

pi[0]=0;

pi[1]=0;

F[0]=1.0;

i=1;

long int j;

for(j=2; j<=rootn; j++)

{

pi[j]=pi[j-1]+interval[j];

if(interval[j]==1)

{

prime[i]=j;

F[i]=F[i-1]*(prime[i]-1.0)/prime[i];

i++;

}

}

// sieve intervals of length rootn

long int m, r;

134

4.3 The hybrid algorithm

m=PBD/rootn;

r=PBD-m*rootn;

count = pcount; // count the first interval

for(i=1; i<m;i++)

{

interval[0]=0;

for(j=1; j<=rootn; j++)

{

interval[j]=1;

}

for(j=1;j<=pcount;j++)

{

for(ptr=prime[j]-((i*rootn)%prime[j]);ptr<=rootn;

ptr+=prime[j])

{

interval[ptr]=0;

}

}

for(j=0; j<=rootn; j++)

135

4.3 The hybrid algorithm

{

pi[rootn*i+j]=pi[rootn*i+j-1]+interval[j];

if(interval[j]==1)

{

count++;

prime[count]=rootn*i+j;

F[count]=F[count-1]*(prime[count]-1.0)/prime[count];

}

}

}

// last interval

interval[0]=0;

for(j=1; j<=r; j++)

{

interval[j]=1;

}

for(j=r+1; j<=rootn; j++)

{

interval[j]=0;

}

for(j=1;j<=pcount;j++)

136

4.3 The hybrid algorithm

{

for(ptr=prime[j]-((m*rootn)%prime[j]);ptr<=r;ptr+=prime[j])

{

interval[ptr]=0;

}

}

for(j=0; j<=r; j++)

{

pi[rootn*i+j]=pi[rootn*i+j-1]+interval[j];

if(interval[j]==1)

{

count++;

prime[count]=rootn*i+j;

F[count]=F[count-1]*(prime[count]-1.0)/prime[count];

}

}

// calculate sum of reciprocal primes

sumpinv[0]=0.0;

for(j=1;j<=KBD;j++)

{

137

4.3 The hybrid algorithm

sumpinv[j]=sumpinv[j-1]+1.0/prime[j];

}

// calculate reduced moments

L[1][KBD]=1.0706484444688249785754788801621464049769e-9;

L[2][KBD]=1.2125360381904000849879330046048765336008e-17;

L[3][KBD]=1.8416871110871013722627356991238754238205e-25;

L[4][KBD]=3.29594356911638569265174956894439063553e-33;

for(j=KBD-1;j>=0;j--)

{

long double p1=1.0*prime[j+1];

long double p2=p1*p1;

long double p3=p2*p1;

long double p4=p3*p1;

long double p5=p4*p1;

long double p10=p5*p5;

long double l1=1.0/(p2-1.0);

long double l2=(1.0+p2)/(p2-1.0)/(p3-1.0);

long double l22=(2.0*p3+p2-1.0)/(p3-1.0)/(p2-1.0);

long double l21=p2/(p3-1.0)/(p1-1.0);

long double l3=(p4-p3+3.0*p2-p1+1.0)/(p1-1.0)/(p3-1.0)

/(p4-1.0);

138

4.3 The hybrid algorithm

long double l33=(3.0*p3*p3+p4-p3-p1+1.0)/(p1-1.0)/(p3-1.0)

/(p4-1.0);

long double l32=p3*(p3+p2+1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0);

long double l31=p2*(p3+p1+1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0);

long double l4=(p4*p4-p3*p4+4.0*p2*p4+p5+2.0*p4+p3+4.0*p2-p1+1)

/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

long double l44=(4.0*p10*p1+2.0*p10+2.0*p5*p4+p4*p4+3.0*p4*p3

-2.0*p3*p3+p5+p3+p1-1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0)

/(p5-1.0);

long double l43=p4*(p4*p3+2.0*p3*p3+p5+2.0*p4+3.0*p3+2.0*p2+1.0)

/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

long double l42=p3*(p3*p3+p4+2.0*p3+p2+1.0)/(p1-1.0)/(p3-1.0)

/(p3-p2+p1-1.0)/(p5-1.0);

long double l41=p2*(p4*p3+2.0*p5+3.0*p4+2.0*p3+p2+2.0*p1+1.0)

/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

L[1][j]=L[1][j+1]+l1+L[1][j+1]*l1;

L[2][j]=L[2][j+1]+l2+L[2][j+1]*l22+2.0*L[1][j+1]*l21;

L[3][j]=L[3][j+1]+l3+L[3][j+1]*l33+3.0*L[2][j+1]*l32

+3.0*L[1][j+1]*l31;

L[4][j]=L[4][j+1]+l4+L[4][j+1]*l44+4.0*L[3][j+1]*l43

+6.0*L[2][j+1]*l42+4.0*L[1][j+1]*l41;

}

139

4.3 The hybrid algorithm

// initialize AKarr, the asymptotic bound

long double c=3.222;

for(i=1;i<=KBD;i++)

{

long double tmax=floor(log((long double)PBD/prime[i])/log(c));

long double fact=1.0;

long double sum=0.0;

long double logct=log(pow(c,tmax+1.0)*prime[i]);

long double logctm1=log(pow(c,tmax)*prime[i]);

long double ubd=log(1.0+log(c)/logctm1) + 1.0/10.0/logct/logct

+ 4.0/15.0/logct/logct/logct + 1.0/10.0/logctm1/logctm1

+ 4.0/15.0/logctm1/logctm1/logctm1;

for(j=1;j<=tmax;j++)

{

fact*=j;

sum+=(pow((long double)sumpinv[pi[(Long)floor(pow(c,

(long double)j)*prime[i])]]-sumpinv[pi[(Long)pow(c,

(long double)j-1)*prime[i]]],(long double)j)-pow(

(long double)ubd,(long double)j))/fact;

}

sum+=exp(ubd)-1.0;

AKarr[i]=F[i]*sum;

140

4.3 The hybrid algorithm

}

}

Long pilower(long double x) {

if(x<=PBD) return pi[(Long)floor(x)];

else if(x<= 50096009)

return pi[PBD];

else

{

long double lx=log(x);

return (Long) floor(x/lx*(1.0+1.0/lx+1.8/lx/lx));

}

}

Long piupper(long double x) {

if(x<=PBD) return pi[(Long)floor(x)];

else

{

long double lx=log(x);

return (Long) ceil(x/lx*(1.0+1.0/lx+2.51/lx/lx));

}

}

Long primelower(Long k) {

141

4.3 The hybrid algorithm

if(k<=KBD) return prime[k];

else

{

long double lk=log(k);

return (Long)floor(k*(lk+log(lk)-1.0+(log(lk)-2.25)/lk));

}

}

Long primeupper(Long k) {

if(k<=KBD) return prime[k];

else

{

long double lk=log(k);

return (Long)ceil(k*(lk+log(lk)-1.0+(log(lk)-1.8)/lk));

}

}

long double pinvupper(long double x) {

if(x<=PBD)

{

return sumpinv[pi[(Long)floor(x)]];

}

else // Dusart upper bound valid for x>=10372

{

142

4.3 The hybrid algorithm

long double lx=log(x);

return log(lx) + 0.261497212847643 + (1.0/10.0 + 4.0/15.0/lx)

/lx/lx;

}

}

long double pinvlower(long double x) {

if(x<=PBD)

{

return sumpinv[pi[(Long)floor(x)]];

}

else // Dusart lower bound valid for x>1

{

long double lx=log(x);

return log(lx) + 0.261497212847643 - (1.0/10.0 + 4.0/15.0/lx)

/lx/lx;

}

}

long double Flower(Long k)// k=index of prime p_k. {

if(k<=KBD) // use array F

return F[k];

else // k> KBD, so use Dusart

{

143

4.3 The hybrid algorithm

long double lpk=log(primeupper(k));

return eneggam*(1.0-0.2/lpk/lpk)/lpk;

}

}

long double Fupper(Long k)// k=index of prime p_k. {

if(k<=KBD) // use array F

return F[k];

else if(k<=3035782) // F[KBD] is smaller than Dusart for k<=3033524,

// but we use a lower bound for pk, so k<=3035782.

{

return F[KBD];

}

else // k> 3035782, so Dusart is smaller

{

long double lpk=log(primelower(k));

return eneggam*(1.0+0.2/lpk/lpk)/lpk;

}

}

long double Alower(long double u_1inv, Long k) // u_1inv=1/(u-1),

k=index of prime p_k. {

if(u_1inv<=0) // Aupper=Fupper

{

144

4.3 The hybrid algorithm

return Fupper(k);

}

long double bound=Flower(k)-Fupper(pilower(u_1inv));

if(bound<=0)

{

return 0;

}

return bound;

}

long double Aupper(long double u_1inv, Long k)// u_1inv=1/(u-1),

k=index of prime p_k. {

if(k<=KBD)

{

long double min = 1.0;

long double u_0inv=u_1inv;

long double y = L[1][k]*u_0inv;

if (y < min)

min = y;

u_0inv*=u_1inv;

y = L[2][k]*u_0inv;

if (y < min)

min = y;

145

4.3 The hybrid algorithm

u_0inv*=u_1inv;

y = L[3][k]*u_0inv;

if (y < min)

min = y;

u_0inv*=u_1inv;

y = L[4][k]*u_0inv;

if (y < min)

min = y;

Long piflu=pilower(u_1inv);

if(piflu<=KBD && k<=piflu)

{

y=F[k]-F[piflu]+AKarr[piflu];

if(y<min*F[k])

return y;

}

return F[k]*min;

}

else // use an upper bound for the first moment

{

if(k<3388888) // if pi(k)<56855672, then L[1][KBD] is better

return Fupper(k)*L[1][KBD]*u_1inv;

else

{

long double y=k*(log(k)+log(log(k))-1+(log(log(k))-2.25)

146

4.3 The hybrid algorithm

/log(k));

long double f1=1./log(y)+1.5524/(log(y)*log(y));

return Fupper(k)*(f1/y*(+1+f1/y)+0.0067/(y*y*y))*u_1inv;

}

}

}

void init(int argc, char* argv[]) {

if(argc > 1) N = atoll(argv[1]);

if(argc > 2) K = atoll(argv[2]);

cout << "K = " << K << endl;

cout << "N = " << N << endl;

cout << "KBD = " << KBD << endl;

sigma[0] = 1;

Pk[1] = 1;

Sk[1] = 1;

sigma[1] = 1;

cout << setprecision(20);

initprimes();

Y = prime[K];

Fy = F[K];

// bounds for large prime method

147

4.3 The hybrid algorithm

b1=2.0*(1.0-1.0/(Y+1.0));

b2=b1*(1.0-1.0/(Y+1.0));

}

int main(int argc, char* argv[]) {

init(argc,argv);

int i;

back(1,1);

cout << "p2uppersum = " << p2uppersum << endl;

cout << "p2lowersum = " << p2lowersum << endl;

cout << "suminv_ab1 = " << suminv_ab1 << endl;

cout << "suminv_ab2 = " << suminv_ab2 << endl;

cout << "suminv_ab3 = " << suminv_ab3 << endl;

cout << "suminv_med = " << suminv_med << endl;

cout << "2p + small lower = " << p2lowersum+(suminv_ab1 +

2.0*suminv_ab2+ 0.5*suminv_ab3)*F[K] << endl;

cout << "2p + medium lower = " << p2lowersum+suminv_med << endl;

cout << "2p upper = " << 1.0-F[K]*suminv_nab + p2uppersum << endl;

}

148

Chapter 5

The α-pnd method

When we introduced the ideas of Behrend in Section 2.3, we noted that Behrend’s

lower bound idea used a certain set of nondeficient numbers. We will introduce this

set, called the primitive nondeficient numbers, along with their α-generalizations, the

α-primitive nondeficient numbers, in the next section. Just as Deléglise was able to

create both an upper and lower bound algorithm from Behrend’s upper bound idea,

we will be able to extend Behrend’s lower bound method into a method to calculate

both upper and lower bounds for the density of α-abundant numbers. We call this

the α-pnd method.

5.1 Primitive nondeficient numbers

We will introduce the idea of primitive non-deficient numbers by considering the

sequence of non-deficient numbers:

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100,

149

5.1 Primitive nondeficient numbers

It may be noticed that many of these are multiples of 6, the first perfect number.

In fact, every multiple of 6 up to 96 appears. Does this trend continue? If so, then

a number of other questions naturally arise. First, are all multiples of each perfect

number on this list? Second, are there numbers on this list that are not multiples of

perfect numbers? We can answer this one right away. We have an example in the

fourth entry in the list above: Note that 20 is not perfect, and no divisor of 20 is

perfect. But the first few multiples of 20 are also on the list, again leading us to ask

the same question for this number: Are all multiples of 20 on this list?

The answers to these questions leads naturally to the consideration of a particular

subset of non-deficient numbers, which we will call primitive. This subset will be use-

ful in giving us an alternative method of estimating the density of abundant numbers.

We will now show that the line of inquiry concerning multiples of non-deficient num-

bers is a productive one. The following lemma was essentially proven using Lemma

2.1 in the discussion following that lemma, but we will prove it directly below.

Lemma 5.1. Let n and m be natural numbers. In particular

h(nm) ≥ h(n),

with equality only when m = 1.

Proof. The case when m = 1 is clear. When m 6= 1, we use that

h(n) =
∑

d|n

1

d
,

150

5.1 Primitive nondeficient numbers

so that

h(nm) =
∑

d|nm

1

d
≥

∑

d|n

1

d
+

1

nm
> h(n).

This proves the lemma.

Thus, we see that not only are proper multiples of each perfect number abundant,

it is also the case in general that proper multiples of any non-deficient number is

abundant.

Now let us return to the list of non-deficients. Since we now know that all of the

multiples of 6 occur, let us remove these and see what is left:

20, 28, 40, 56, 70, 80, 88, 100,

Of the remaining numbers, many are multiples of the first number, 20. Removing

these, we are left with

28, 56, 70, 88,

If we continue this process, we find that all non-deficient numbers up to 100 are

multiples of 6, 20, 28, 70, or 88. It may be realized by now that we are using a

procedure analogous to the Sieve of Eratosthenes, but on a different set. In general,

we will use the term primitive for such a set of numbers which correspond to the

primes in this way.

Definition 5.2. If S is a subset of the natural numbers, let M (S) denote the set

M (S) := {sn : s ∈ S , n ∈ N}.

We call M (S) the set of multiples of S and say that a set S generates set T if

151

5.1 Primitive nondeficient numbers

T = M (S).

There is a unique minimal generating set for T which can be found by taking

the intersection of all S such that T = M (S). To see this, it suffices to show

that if T = M (Si) for i = 1, 2, then T = M (S1 ∩ S2). One inclusion is easy,

since M (S1 ∩S2) ⊆ M (S1) = T . To see the opposite inclusion, suppose t ∈ T .

Let si be the smallest member s ∈ Si such that ms = t, and let misi = t. Since

s1 ∈ S1 ⊆ M (S2), there are m and s ∈ S2 such that ms = s1. Thus s1 ≥ s.

However, by definition of s2, since t = m1s1 = (m1m)s, we have that s ≥ s2, so we

conclude that s1 ≥ s2. However, this argument is symmetric in switching subscripts

1 and 2, so s2 ≥ s1. We conclude that s1 = s2 ∈ S1 ∩S2. Thus t ∈ M (S1 ∩S2).

By analogy with the primes, we will use the adjective primitive when referring to

either the unique minimal generating set or its members. In view of Lemma 5.1, we

have that a primitive non-deficient number (pnd) is a number n such that h(n) ≥ 2,

while for each proper divisor d of n, h(d) < 2. Analogously, for any real number α

a primitive α-non-deficient number (α-pnd) is a number n such that h(n) ≥ α while

for each proper divisor d, h(d) < α. The set of pnd’s and α-pnd’s will be denoted P

and Pα, respectively. Thus, we have the following proposition.

Proposition 5.3. The sets A ′ and A ′
α are generated by P and Pα, respectively, so

that

A ′ = M (P) and A ′
α = M (Pα).

Remark 5.4. In the literature primitive non-deficient numbers are often called primi-

tive abundant numbers, and are abbreviated pan. This definition becomes the natural

one provided an abundant number n is redefined so that h(n) ≥ 2, as is done in [3, 5].

However, we will not be following these conventions.

152

5.2 A density lower bound method

5.2 A density lower bound method

In Behrend’s doctoral dissertation, a lower bound for the lower density of abundant

numbers is found by calculating the density of the multiple set of a finite subset of the

primitive non-deficient numbers. (We say lower density since the density of abundant

numbers was not yet known to exist.) For instance, at one point Behrend requires

the density of the multiple set of four pnd’s:

dM ({2 · 3, 22 · 5, 22 · 7, 2 · 5 · 7}).

To find this density, he partitions the multiple set into disjoint subsets in the following

way. Define Ac
a to be the set of numbers that are multiples an of a such that (n, c) = 1.

Then he observes that the density of such a set has the simple form

dAc
a =

φ(c)

c
· 1

a
.

By choosing appropriate values of c corresponding to each pnd a such that the sets

Ac
a are disjoint, their individual densities can be evaluated. Then summing these

densities gives us the total density. We seek to generalize this method so that, given

an arbitrary set of primitive non-deficient numbers, we can identify for each pnd a an

appropriate c such that
∑

a dAc
a gives the density of the multiples of these pnd’s.

Suppose we begin näıvely by considering consecutive pnd’s. For the pair of pnd’s

6 and 20, we observe that their multiples coincide at the multiples of [6, 20], so we

write the combined density of multiples of 6 and 20 as

1

6
+

1

20
− 1

[6, 20]
=

1

6
+

1

20

(
1− 20

[6, 20]

)
=

1

6
+

1

20

(
1− (6, 20)

6

)
.

153

5.2 A density lower bound method

Indeed, for any two numbers a1 and a2 we have

d(a1N ∪ a2N) = da1N+ da2N− d[a1, a2]N

=
1

a1

+
1

a2

− 1

[a1, a2]
=

1

a1

+
1

a2

− (a1, a2)

a1a2

=
1

a1

+
1

a2

(
1− (a1, a2)

a1

)
=

1

a1

+
1

a2

(
1− 1

c1,2

)
,

where c1,2 = a1/(a1, a2). We can think of 1 − 1
c1,2

as a correction factor that takes

into account the overlap that the multiples of a2N have with a1N.

Unfortunately, for three terms the general correction factor is not as clean. In

fact, the additional term which is the density of the set a3N \ (a1N ∪ a2N) can be

written

d (a3N \ (a1N ∪ a2N)) =
1

a3

− 1

[a1, a3]
− 1

[a2, a3]
+

1

[a1, a2, a3]

=
1

a3

− (a1, a3)

a1a3

− (a2, a3)

a2a3

+
([a1, a2], a3)

[a1, a2]a3

=
1

a3

(
1− (a1, a3)

a1

− (a2, a3)

a2

+
[(a1, a3), (a2, a3)](a1, a2)

a1a2

)

=
1

a3

(
1− (a1, a3)

a1

− (a2, a3)

a2

+
(a1, a3)(a2, a3)(a1, a2)

a1a2((a1, a3), (a2, a3))

)
.

Now suppose that we have

(a1, a2) = ((a1, a3), (a2, a3)). (5.1)

Then we arrive at a simpler expression for the correction factor, since

1− (a1, a3)

a1

− (a2, a3)

a2

+
(a1, a3)(a2, a3)

a1a2

=

(
1− (a1, a3)

a1

)(
1− (a2, a3)

a2

)
.

154

5.2 A density lower bound method

It is easy to see that the condition (5.1) required for this simplification is equivalent

to the condition (
a1

(a1, a3)
,

a2

(a2, a3)

)
= 1. (5.2)

The following proposition generalizes the observations made above to any number

of terms. For convenience, we use the following notation.

Definition 5.5. For sequence (ai)
k
i=1 we write Mj(a1, a2, . . . , ak) for the set of mul-

tiples of aj that are not multiples of any ai, i < j. Thus,

Mj(a1, a2, . . . , ak) := ajN \
⋃
i<j

aiN.

We note that this allows us to partition M ({a1, a2, . . . , ak}) into the disjoint union

of subsets Mj(a1, a2, . . . , ak), j ≤ k.

Proposition 5.6. Let A = (aj)
k
j=1 be a sequence of natural numbers and for each j

construct the sequence Cj = (ci,j)
j−1
i=1 whose elements are defined by ci,j = ai/(ai, aj).

In addition suppose that for each j the elements of Cj are pairwise coprime. Then

the density of Mj(A) is given by

dMj(A) =
1

aj

j−1∏
i=1

(
1− 1

ci,j

)
,

so that

dM (A) =
k∑

j=1

1

aj

j−1∏
i=1

(
1− 1

ci,j

)
. (5.3)

155

5.2 A density lower bound method

Proof. We first write

d

(
j⋃

i=1

aiN

)
= d

(
j−1⋃
i=1

aiN t
(

ajN \
j−1⋃
i=1

aiN

))

= d

(
j−1⋃
i=1

aiN

)
+ d

(
ajN \

j−1⋃
i=1

aiN

)
.

Thus, to prove the proposition, it suffices to show that

d

(
j⋃

i=1

aiN

)
− d

(
j−1⋃
i=1

aiN

)
= d

(
ajN \

j−1⋃
i=1

aiN

)
=

1

aj

j−1∏
i=1

(
1− 1

ci,j

)
. (∗)

We prove this by induction on j. When j = 1, (∗) becomes the equation d a1N = 1/a1,

which is true. Suppose the relation (∗) is true for j = k − 1. Then by the induction

hypothesis the density of the set S of multiples of ak not divisible by ai for i ≤ k− 2

is

dS = d

(
akN \

k−2⋃
i=1

aiN

)
=

1

ak

k−2∏
i=1

(
1− 1

ci,k

)
.

We want to subtract the density of multiples of ak−1 in S from the density of S. Thus,

we want the density of the set

T := ak−1N ∩ S = ak−1N ∩ akN ∩
(

k−2⋃
i=1

aiN

)c

= [ak−1, ak]N \
k−2⋃
i=1

aiN.

Now we write a′k−1 := [ak, ak−1] and c′i,k−1 := ai/(ai, a
′
k−1). Since ak | a′k−1, we have

c′i,k−1 | ci,k. This in turn gives that (ci1,k, ci2,k) = 1 implies (c′i1,k−1, c
′
i2,k−1) = 1. This

allows us to use the induction hypothesis on T so that we have

dT =
1

[ak, ak−1]

k−2∏
i=1

(
1− 1

c′i,k−1

)
=

1

akck−1,k

k−2∏
i=1

(
1− 1

c′i,k−1

)
.

156

5.2 A density lower bound method

We will show that ci,k = c′i,k−1 for each i ≤ k − 2. Then

dT =
1

akck−1,k

k−2∏
i=1

(
1− 1

ci,k

)
,

so that the difference dS − dT becomes

1

ak

k−2∏
i=1

(
1− 1

ci,k

)
− 1

akck−1,k

k−2∏
i=1

(
1− 1

ci,k

)
=

1

ak

k−1∏
i=1

(
1− 1

ci,k

)
,

which proves our result.

Thus, it remains to show that ci,k = c′i,k−1 for each i ≤ k− 2. We will now use our

condition that for each i ≤ k − 2,

(ci,k, ck−1,k) =

(
ai

(ai, ak)
,

ak−1

(ak−1, ak)

)
= 1.

For p prime, define ei for each i ≤ k such that pei‖ai. Then the coprimality condition

translates to

min{ei −min{ei, ek}, ek−1 −min{ek−1, ek}} = 0.

We now consider each of the cases where either the first or second entry is smaller.

If the first entry is smaller than the second, then the first entry must be 0 so

min{ei, ek} = ei and ei ≤ ek. If the second entry is smaller than the first, then

we have analogously that ek−1 ≤ ek. Observe that in either of these cases, we have

min{ei, max{ek, ek−1}} = min{ei, ek},

157

5.2 A density lower bound method

which translates to

(ai, [ak, ak−1]) = (ai, ak).

Then

c′i,k−1 =
ai

(ai, [ak, ak−1])
=

ai

(ai, ak)
= ci,k,

as claimed.

Remark 5.7. In the event that the sequence contains repeated terms, say ai = aj

for i < j, then the result nevertheless applies since in this case

ci,j =
ai

(ai, aj)
=

ai

(ai, ai)
= 1,

so 1− 1/ci,j = 0 and dMj(a1, . . . , aj) = 0 so the jth term does not contribute to the

density sum. In any case, in what follows we will only be concerned with sequences

having distinct terms.

Definition 5.8. We call ci,j in Proposition 5.6 the cofactor of aj for ai, and denote

the sequence of cofactors of aj by Cj.

For our purposes it will be useful to have a weaker version of the coprimality

condition on Cj. To take the place of Cj, we define

C ′
j := {c ∈ Cj : c′ ∈ Cj, c

′ 6= c =⇒ c′ - c}.

Note that whereas Cj is a sequence, C ′
j is defined as a set since we will not be

concerned with the order of its members nor with any multiplicity which may occur

in the terms of the sequence Cj. The set C ′
j will be called the reduced cofactor set for

aj. We can now state the following theorem.

158

5.2 A density lower bound method

Theorem 5.9. Let (aj)
k
j=1 be a sequence of natural numbers and let (C ′

j)
k
j=1 be the

corresponding sequence of reduced cofactor sets. Suppose in addition that for each j

the elements of C ′
j are pairwise coprime. Then

dMj(a1, . . . , aj) =
1

aj

∏

c∈C′j

(
1− 1

c

)
(5.4)

and

dM ({aj}k
j=1) =

k∑
j=1

1

aj

∏

c∈C′j

(
1− 1

c

)
. (5.5)

Proof. We repeat the argument proving Theorem 5.6 where in place of (∗) we now

show that

d

(
k⋃

j=1

ajN

)
− d

(
k−1⋃
j=1

ajN

)
= d

(
akN \

k−1⋃
j=1

ajN

)
=

1

ak

∏

c∈C′k

(
1− 1

c

)
. (∗′)

We again use induction on k. As before, when k = 1 we are done, so assume (∗′) is

true for k − 1 elements. Then calling S ′ the set of multiples of ak not divisible by aj

for j ≤ k − 2, we have

dS ′ = d

(
akN \

k−2⋃
j=1

ajN

)
=

1

ak

∏

c∈C′′k

(
1− 1

c

)
,

where C ′′
k is the reduced cofactor set for ak with the sequence (a1, . . . , ak−2). The set

T ′ of multiples of ak−1 in S ′ is

T ′ := [ak−1, ak]N \
k−2⋃
i=1

aiN,

159

5.2 A density lower bound method

having density

dT ′ =
1

[ak, ak−1]

∏

c∈C′′′k

(
1− 1

c

)
=

1

akck−1,k

∏

c∈C′′′k

(
1− 1

c

)
,

where C ′′′
k is the reduced cofactor set for [ak−1, ak] with the sequence (a1, . . . , ak−2).

We need to show that dT ′ = 0 if and only if there is some i such that ci,k | ck−1,k.

Thus, we write

ci,k | ck−1,k ⇐⇒ [ai, ak] = ci,kak | ck−1,kak = [ak−1, ak]

⇐⇒ ai | [ak−1, ak]

⇐⇒ (ai, [ak−1, ak]) = ai

⇐⇒ ai

(ai, [ak−1, ak])
= 1,

so 1 appears as an element of C ′′′
k and dT = 0. On the other hand, if 1 does not

appear in C ′′′
k , then ci,k - ck−1,k for any i < k − 1, so ck−1,k ∈ C ′

k.

Finally, we must show that in the latter case C ′′
k = C ′′′

k . But we have already

shown in the previous proof that the cofactor sets are the same before reduction.

Thus, they must be the same after reduction as well. We conclude that the difference

dS ′ − dT ′ is

1

ak

∏

c∈C′′k

(
1− 1

c

)
− 1

akck−1,k

∏

c∈C′′′k

(
1− 1

c

)
=

1

ak

∏

c∈C′k

(
1− 1

c

)
,

as asserted.

160

5.3 The “significance” of prime powers

5.3 The “significance” of prime powers

We seek to identify a sequence of pnd’s that satisfies the conditions of Theorem 5.9.

That an arbitrary sequence will not work can be seen in the case of the following

sequence of pnd’s:

22 · 5, 22 · 7, 2 · 3

This gives the numbers 10 and 14 as cofactors for 6. However, 10 and 14 are not

relatively prime and neither is divisible by the other.

We will determine an ordering that depends on how much a prime factor of a

number n contributes to its abundance, in the following sense. Let h(n) = σ(n)/n.

Writing n =
∏

pei
i , where the primes pi are distinct and each ei ≥ 1, we have by the

multiplicativity of h that h(n) =
∏

h(pei
i). Now comparing h(n) to h(n/pi) we see

that they differ by the factor

h(n)

h(n/pi)
=

h(n/pei
i)h(pei

i)

h(n/pei
i)h(pei−1

i)
=

pei+1
i − 1

pei
i (pi − 1)

· pei−1
i (pi − 1)

pei
i − 1

=
pei+1

i − 1

pei+1
i − pi

= 1 +
pi − 1

pi(p
ei
i − 1)

= 1 +
1

piσ(pei−1
i)

= 1 +
1

σ(pei
i)− 1

.

We can now see that the effect that removing a prime factor p from n has on h(n)

depends on σ(pe), pe||n, with larger values σ(pe) having a smaller effect. We will now

define an ordering on prime powers that reflects this effect. However, it may be the

case that more than one prime power have the same sigma value. For instance, 24

and 52 both have a σ-value of 31. In such a case we will want to distinguish the two

prime powers. We thus make the following definition:

161

5.4 An ordering of α-pnd’s

Definition 5.10. Suppose there are k prime powers pei
i with equal σ-values and with

p1 < · · · < pk. We define the significance of the prime power pei
i , sig(pei

i), to be

sig(pei
i) =

1

σ(pei
i) + i−1

k

.

Thus, for two prime powers pe and qf , if σ(pe) < σ(qf) then sig(pe) > sig(qf), and

in the event that σ(pe) = σ(qf) and p < q, we have sig(pe) > sig(qf).

We extend the definition of significance to all natural numbers as follows. For

n > 1, we take sig(n) = min{sig(pe) : pe | n}. Finally, if n = 1, we take sig(1) = 1.

We now order the prime powers pe by decreasing significance and construct primi-

tive non-deficient numbers whose prime power factors have bounded significance. The

sequence P = (pei
i)∞i=1 of prime powers ordered by significance thus begins

2, 3, 5, 22, 7, 11, 32, 13, 23, 17, 19, 23, 29, 24, 52, 31, 37, 33, 41, 43, 47, 53, 72,

Remark 5.11. Note that the ordering of prime powers by significance differs from

the natural ordering in that prime powers pe for e > 1 show up later than they would

otherwise. Note also with the notation for prime powers ordered by significance,

P = (pei
i)∞i=1, pi may be equal to pj for i 6= j. In fact, each prime p is equal to pi for

infinitely many i’s.

5.4 An ordering of α-pnd’s

We are now in a position to construct a sequence of α-pnd’s that satisfies the con-

ditions of Theorem 5.9. We will order the primitive non-deficient numbers using the

162

5.4 An ordering of α-pnd’s

prime power sequence P in the following manner.

For each term pei
i in P , we consider the set of α-pnd’s which have pei

i as the least

significant prime power factor, which we will call the pei
i -block. The sequence of blocks

found in this way contains all α-pnd’s since any α-pnd has a unique least significant

prime power factor, and such a α-pnd will be found in the corresponding block. We

will then say that P is ordered by significance. If we wish, we could further order the

members of each block, say using lexicographic ordering by significance, but in fact

we will not be concerned with how elements are ordered within each block.

To demonstrate this ordering, we will construct a list of the first few blocks for

α = 2. The list would begin by choosing pe1
1 = 21. However, since 2 is deficient

and there are no prime powers preceding it, there are no pnd’s corresponding to this

choice. Hence the 21-block is empty. We now move on to the next term, pe2
2 = 31.

The number 3 by itself is deficient, but 3 · 2 is a pnd, so we have found the first

one on our list. Since we have exhausted our possibilities with 31, this completes the

31-block. The next term of P is 51, and we construct pnds that have 5 as a factor

which also contain 2 or 3. Since we want to avoid multiples of 6, we need only check

that neither 10 nor 15 are abundant. Next we use 22. We do not consider 2 since 2

divides 22, and we need not consider 3 since we have already counted 6. Thus, we

check that 22 · 5 is abundant, and that it is primitive since removing either a 5 or

a 2 makes the number deficient. In fact, due to our ordering we only need to check

that removing a 2 makes the number deficient. The next term, 7, gives us two pnd’s,

2 · 5 · 7 and 22 · 7. Thus, there are two elements in the 7-block. Proceeding in this

manner, we generate a list of blocks of pnd’s

{}, {2 · 3}, {}, {5 · 22}, {2 · 5 · 7, 22 · 7}, {}, {5 · 7 · 11 · 32},

163

5.4 An ordering of α-pnd’s

To state the next theorem, we introduce the notation

Lk := lcm{pei
i : i ≤ k}. (5.6)

Theorem 5.12. The ordering of α-pnd’s by significance satisfies the conditions of

Theorem 5.9. In fact, the reduced cofactor set for each α-pnd a consists only of

primes, and is given explicitly for a in block pek
k as

C ′ = {p : p | Lk/a}.

Proof. It suffices to show that the primes p in the cofactor set C for a in block pek
k

are exactly those satisfying p | Lk/a, and that each composite c ∈ C is divisible by

some prime p ∈ C.

First suppose p | Lk/a. Then p 6= pk and ap/pk is abundant, since if pe‖a, then

pe+1 has greater significance than pek
k . Thus, ap/pk has an α-pnd divisor a′ appearing

before a, and

a′

(a′, a)
= p.

Thus, all the primes claimed are in C ′.

Conversely, say a′ appears before a in the sequence and p | a′/(a′, a). Then for

some e > 0, pe‖a′ and pe - a. But pe | Lk. Thus, p | Lk/a.

So, we have shown that each prime dividing Lk/a is in C and that each prime

factor of each c ∈ C divides Lk/a. Thus, C ′ is the set of primes dividing Lk/a.

164

5.4 An ordering of α-pnd’s

By this theorem, we now have a compact way of writing the product in (5.5):

∏

c∈C′i

(
1− 1

c

)
=

ϕ(ci)

ci

, ci =
∏

c∈C′i

c. (5.7)

Then we can extract the relevant information for each α-pnd ai in the single number

ci. We define the sequence

C = (ci)
∞
i=1

to be the cofactor sequence for the sequence of pnd’s P ordered by significance, and

in general let Cα be the cofactor sequence for the sequence of α-pnd’s ordered by

significance. Thus, we have the following corollary.

Corollary 5.13. Let P1 be any subsequence of P ordered by significance such that if

pe is a term of P1, then so is pf for 1 ≤ f < e. Let P1 be the sequence of α-pnd’s

formed using P1 and the procedure described in this section, with P1 = (ai)
r
i=1 ordered

by significance. Let (ci)
r
i=1 be the cofactor sequence for P1. Then the density of the

set of multiples of P1 is given by

dM (P1) =
r∑

i=1

φ(ci)

ci

· 1

ai

=
r∑

i=1

φ(Lk/ai)

Lk

,

where k is the index of the block in which ai belongs.

This sum allows us to calculate a lower bound for the density of abundant numbers

and generalizes Behrend’s calculation for a large class of subsets of α-pnd’s. We will

call this the α-pnd method, or simply the pnd method when α = 2.

We conclude this section with a table of the first few pnd’s ordered by significance,

the block they belong to, their cofactor sequence, their reduced cofactor, and the

165

5.4 An ordering of α-pnd’s

corresponding reduced cofactor set.

a block cofactor sequence Lk/a reduced cofactor set
2 · 3 3 1
5 · 22 22 (3) 3 {3}

2 · 5 · 7 7 (3, 2) 3 · 2 {3, 2}
22 · 7 7 (3, 5, 5) 3 · 5 {3, 5}

5 · 7 · 11 · 32 32 (2, 22, 2, 22) 22 {2}

166

5.5 Asymptotics of the pnd method when α = 2

5.5 Asymptotics of the pnd method when α = 2

Let us denote by P[y] the set of pnd’s in P consisting of pnd’s from pe-blocks with

σ(pe) ≤ y. By the pnd method we can calculate the density dM (P[y]). We now ask

for a bound on the error dA − dM (P[y]). A simple bound can be found by taking

the reciprocal sum of the elements of the set P \ P[y]. We first show that this set is

contained in P \ P(y), so that
∑

a∈P
a>y

1

a
(5.8)

is an upper bound. The containment can be seen by the chain of implications

σ(pe) > y =⇒ pe > y/2 =⇒ 2pe > y =⇒ a > y,

where the first implication is from the observation that for any prime power pe we

have h(pe) < 2, and the final implication uses that pe is a proper divisor of a. In fact,

with a little more work we may improve the bound on a.

Lemma 5.14. Let a be a pnd. If pe‖a and sig(a) = sig(pe), where σ(pe) > y, then

a > max

{
py

2
,
pe−1(y − 1)

2

}
.

Independent of p, we have

a > max

{(y

2

)1+ 1
e
,
y − 1

y

(y

2

)2− 1
e

}
.

167

5.5 Asymptotics of the pnd method when α = 2

Finally, independent of e, we have

a >
y − 1

y

(y

2

)2

.

Proof. We will factor the pnd a in two different ways to determine two bounds on a.

First, write a = a′p. Since a is a pnd,

2 > h(a′) ≥ 2
h(pe−1)

h(pe)
= 2

(
σ(pe−1)pe

pe−1σ(pe)

)
= 2

(
σ(pe)− 1

σ(pe)

)
= 2− 1

σ(pe)/2
.

We now use that a rational number in an interval (0, 1/n] must have denominator

d with d ≥ n. Thus, writing 2 − h(a′) as the fraction (2a′ − σ(a′))/a′, we have

a′ ≥ σ(pe)/2 > y/2 so a > py/2. To remove the dependence on p, we determine a

bound on p. Since h(pe) < p/(p− 1) < 2, we have pe > σ(pe)/2 > y/2. We conclude

that

a = a′p >
(y

2

)1+1/e

.

We now factor a as a = a′′pe. Then we have

2
pe−1

σ(pe−1)
> h(a′′) ≥ 2

pe

σ(pe)
.

Multiplying the inequalities through by p/2, we have

p
pe−1

σ(pe−1)
>

ph(a′′)
2

≥ p
pe

σ(pe)
.

168

5.5 Asymptotics of the pnd method when α = 2

Next we use that pe = σ(pe)− σ(pe−1) so that

σ(pe)− σ(pe−1)

σ(pe−1)
>

ph(a′′)
2

≥ σ(pe+1)− σ(pe)

σ(pe)
.

Finally, we use σ(pe) = pσ(pe−1) + 1 so the inequalities become

(p− 1)σ(pe−1) + 1

σ(pe−1)
>

ph(a′′)
2

≥ (p− 1)σ(pe) + 1

σ(pe)
.

Thus, we have that

1

σ(pe−1)
>

ph(a′′)
2

− (p− 1) ≥ 1

σ(pe)
> 0,

which means that the fraction ph(a′′)/2 = pσ(a′′)/2a′′ has denominator 2a′′ bounded

by

2a′′ > σ(pe−1) =
σ(pe)− 1

p
>

y − 1

p
.

Thus, a = a′′pe > pe−1y/2. We remove the dependence on p using pe > σ(pe)/2 > y/2

so that

a = a′′p · pe−1 >
y − 1

2
·
(y

2

) e−1
e

=
y − 1

y

(y

2

)2− 1
e
.

The third assertion of the lemma follows from the second by separately considering

the cases e = 1 and e ≥ 2.

Although this result is not significant asymptotically, it can be used to advantage

for computational purposes.

For purposes of asymptotics we will return to the simpler bound a > y for the

remainder of this section. We now show that as y → ∞, the error bound (5.8) goes

169

5.5 Asymptotics of the pnd method when α = 2

to zero. By partial summation we can write

∑

a∈P,a>y

1

a
=

[|P(n)|
n

]∞

y

+

∫ ∞

y

|P(n)|
n2

dn.

From [12], we have the upper bound

|P(n)| ≤ n exp

(
− 1

25

√
log n log log n

)

for n larger than some n0(ε). Since

∑

a∈P,a>y

1

a
≤

∫ ∞

y

|P(t)|
t2

dt

≤
∫ ∞

y

1

te
1
25

√
log t log log t

dt

= O

((
log y

log log y

)1/2

exp

(
− 1

25
(log y log log y)1/2

))

for sufficiently large y, we have that the error does indeed go to zero. We have thus

proved the following theorem and corollary.

Theorem 5.15. The error dA − dM (P[y]) behaves as

dA − dM (P[y]) = O

((
log y

log log y

)1/2

exp

(
− 1

25
(log y log log y)1/2

))

for sufficiently large y.

Corollary 5.16. The density of abundant numbers can be expressed as the infinite

sum

dA =
∑

ai∈P

ϕ(ci)

ci

1

ai

,

170

5.6 Special values of α

where the ai are pnd’s and ci = Lk/ai, as defined in (5.7), and where Lk is as defined

in (5.6).

5.6 Special values of α

Recall that the Deléglise method uses a different infinite sum expression for dA which

can be extended to determine in general the density of α-nondeficient numbers. We

have shown that the error term goes to zero uniformly in α. In contrast, we cannot

extend the error estimate for the pnd method to the case for α-pnd’s. In fact, to

prove Theorem 5.15 we have used the result in [12] which makes special use of the

value α = 2. In contrast, Erdős in [14] presents an example of α for which the sum of

reciprocals of α-pnd’s does not converge. We will begin by supplying a proof of this

fact, which is only stated in the Erdős paper.

Proposition 5.17. Let p1, p2, . . . be an infinite sequence of primes satisfying pk+1 >

exp(exp(p2
k)). Define α to be

α :=
∞∏

k=1

(
1 +

1

pk

)
= lim

k→∞
σ(p1p2 · · · pk)

p1p2 · · · pk

.

Then the sum of reciprocals of α-pnd’s does not converge.

Proof. First we check that this infinite product converges. We note that since exp(x) >

x, we also have exp(exp(x)) > exp(x) > x, which we use to show

pk > exp(exp(p2
k−1)) > p2

k−1.

171

5.6 Special values of α

Then
∞∑

k=1

1

pk

< 1 +
∞∑

k=2

1

p2
k−1

< ζ(2),

establishing convergence. Finally,

∞∏

k=1

(
1 +

1

pk

)
< exp

(∞∑

k=1

log

(
1 +

1

pk

))
< exp

(∞∑

k=1

1

pk

)
< exp(ζ(2)),

so the infinite product also converges.

Next we verify that the numbers n = p1p2 · · · pkp, for primes pk < p < pk+1, are

all α-pnd’s. To see that n is α-nondeficient, note that

h(n) =
k∏

i=1

(
1 +

1

pi

)
·
(

1 +
1

p

)
,

so h(n) ≥ α follows if

1 +
1

p
≥

∞∏

i=k+1

(
1 +

1

pi

)
.

First we establish a lower bound for the left side of this inequality. Since p ≤ pk+1−2,

1 +
1

p
≥ 1 +

1

pk+1 − 2
=

(
1 +

1

pk+1

) (
1 + 1

pk+1−2

1 + 1
pk+1

)
.

The final factor is

pk+1(pk+1 − 2) + pk+1

(pk+1 + 1)(pk+1 − 2)
= 1 +

2

(pk+1 + 1)(pk+1 − 2)
> 1 +

2

p2
k+1 − 1

> 1 +
2

p2
k+1

.

We continue the estimate by using the definition of pk+2 to write

1 +
2

p2
k+1

> 1 +
2

log log pk+2

.

172

5.6 Special values of α

Thus, we see that we have reduced our problem to establishing

1 +
2

log log pk+2

≥
∞∏

i=k+2

(
1 +

1

pi

)
.

Now we turn our attention to the right side of this inequality and determine an upper

bound that is easy to compare to the left side. We first use the bound

∞∏

i=k+2

(
1 +

1

pi

)
= exp

(∞∑

i=k+2

log

(
1 +

1

pi

))
< exp

(∞∑

i=k+2

1

pi

)
.

For the final infinite sum, we iterate the inequality established earlier of pk > p2
k−1 to

get

pk+i > p2i

k−1.

Thus,
∞∑

i=k+2

1

pi

<
1

pk+2

+
∞∑
i=1

1

p2i

k+2

<
2

pk+2

,

and since exp(x) < 1 + 2x for 0 < x ≤ 1,

exp

(∞∑

i=k+2

1

pi

)
< exp

(
2

pk+2

)
< 1 +

4

pk+2

.

It remains to demonstrate that

log log x <
x

2

for x > 1. This can be seen via the inequalities ex > x > log x for x > 0 and by

noting that x− log x has minimum value 1 for x > 0. Then

ex > x ≥ log x + 1 > log x + log 2 = log 2x,

173

5.6 Special values of α

so taking logs and replacing x by x/2 gives us what we wanted to show.

Since we have identified a subset of the primitive α-nondeficient numbers, it re-

mains to show that the reciprocal sum of these numbers diverges. We first factor the

sum according to
∞∑

k=1

1

p1 · · · pk+1

∑
pk<p<pk+1

1

p

and bound the inner sum. Using

∑
p≤x

1

p
= log log x + O(1) and log log x <

x

2
≤ x2

2

for x ≥ 1, along with the definition of pk+1, we get

∑
pk<p<pk+1

1

p
= log log pk+1 − log log pk + O(1)

≥ p2
k −

1

2
p2

k + O(1)

=
1

2
p2

k + O(1).

Next, we prove by induction that pk > p1p2 · · · pk−1. For k = 2, this is clear by

definition. Assuming the validity of case k − 1, we have p1p2 · · · pk−1 < p2
k−1 < pk, as

claimed. We use this result to show divergence of our sum:

K∑

k=1

1

p1 · · · pk+1

∑
pk<p<pk+1

1

p
≥

K∑

k=1

1

p2
k

·
(

1

2
p2

k + O(1)

)

=
1

2
K + O(1).

Since the sum diverges as K →∞, we have proven our result.

174

5.7 Liouville numbers

5.7 Liouville numbers

A number δ is called a Liouville number if for each k there exists a rational number

ak/bk, with ak, bk ∈ Z, such that

0 <

∣∣∣∣δ −
ak

bk

∣∣∣∣ <
1

bk
k

.

This condition implies that δ is irrational, and moreover that it is transcendental. In

[14], Erdős stated that the α defined in Proposition 5.17 is a Liouville number, and

in general that if for some value α the primitive α-abundant numbers have divergent

reciprocal sum, then α must be Liouville. We first provide a proof of the first claim.

Proposition 5.18. The number α defined in Proposition 5.17 is Liouville.

Proof. Define

ak

bk

=
k∏

i=1

(
1 +

1

pi

)
, bk =

k∏
i=1

pi.

Then it suffices to prove that the sequence of rational numbers ak/bk approximates

α better than 1/bk
k for all k. Thus, we need to prove that

∣∣∣∣α−
ak

bk

∣∣∣∣ =
∞∏
i=1

(
1 +

1

pi

)
−

k∏
i=1

(
1 +

1

pi

)
<

1

bk
k

,

or, dividing both sides by ak/bk,

∞∏

i=k+1

(
1 +

1

pi

)
− 1 <

1

bk
k

∏k
i=1

(
1 + 1

pi

) .

175

5.7 Liouville numbers

We will proceed by bounding above the left side of this inequality:

∞∏

i=k+1

(
1 +

1

pi

)
− 1 < exp

(∞∑

i=k+1

1

pi

)
− 1

<
3

2

∞∑

i=k+1

1

pi

=
3

2

1

pk+1

+
3

2

1

pk+2

+
3

2

∞∑

i=k+3

1

pi

<
3

2

1

pk+1

+
3

2

1

pk+2

+
3

2

∞∑

i=k+2

1

p2
i

<
3

2

1

pk+1

+
3

2

1

p2
k+1

+
3

2

1

p2
k+1

<
2

pk+1

.

Next we prove by induction that

(
2

k∏
i=1

pi

)k

< pk+1,

so that

2

pk+1

<
2

(2bk)
k
.

From the definition for pk we have 2p1 < p2. Now assuming the case k− 1, and using

the result pk >
∏k−1

i=1 pi, we have

(
2

k−1∏
i=1

pi

)k−1

·
k−1∏
i=1

pi · pk
k <

(
2

k∏
i=1

pi

)k

< 2kpk+2
k .

Thus, it remains to show

2kpk+2
k < eep2

k ,

176

5.7 Liouville numbers

since the expression on the right bounds pk+1 below by definition. Since x+1 < x2/2

for x > 3 (and noting that exp exp 4 ≈ 5× 1023 so pk > 3), we have

pk + 2 < 1 +
1

2
p2

k < e
1
2
p2

k ,

and thus

log log(2kpk+2
k) < log(pk + 2) + log log 2pk < 2 log(pk + 2) < p2

k.

Thus,
∞∏

i=k+1

(
1 +

1

pi

)
− 1 <

2

pk+1

<
2

(2bk)k
<

1

bk

∏k
i=1

(
1 + 1

pi

)

for k > 1. This proves that α is Liouville.

Let Nα(n) denote the number of primitive α-abundant numbers in [1, n]. Erdős

in [14] states that if α is not a Liouville number, then it can be shown using a proof

similar to that found in [12] that

Nα(n) <
n

ecα(log n log log n)1/2

for some positive constant cα. Note that if α is non-Liouville, there must be some

positive real number κ such that

∣∣∣α− a

b

∣∣∣ >
1

bκ

for any a, b ∈ Z such that α 6= a/b. Note also that if the inequality is satisfied for

some κ = κ0, then any value of κ greater than κ0 will satisfy the inequality as well.

177

5.7 Liouville numbers

Thus we may assume that κ ≥ 2.

We will prove the Erdős statement in terms of such an exponent κ. In fact we will

establish explicit constants which is useful in an implementation of the upper bound α-

pnd calculation for α non-Liouville. The proof of Erdős in [12] has subsequently been

refined by Aleksandar Ivić [24] and Michael Avidon [2]. However, these refinements

rely on the use of the counting function for y-smooth numbers n ≤ x, Ψ(x, y), which

is difficult to make explicit. We have chosen instead to follow the earlier Erdős proof.

In the proof we will be factoring numbers n according to the power of their prime

factors, as follows.

Definition 5.19. Let the squarefree part of n be the product of the prime factors

of n that occur to the first power, and the squarefull part the product of the prime

factors that occur to higher powers. For instance, the squarefree part of 2 · 3 · 52 · 73

is 2 · 3 and the squarefull part 52 · 73.

Theorem 5.20. Let Pα(x) denote the set of α-pnd’s in [1, x]. Suppose α is a non-

Liouville number and κ ≥ 2 is an integer such that for any a, b ∈ Z, α 6= a/b,

∣∣∣α− a

b

∣∣∣ >
1

bκ
.

Then

|Pα(x)| ≤ δ
x

e
β

12κ
(log x log log x)1/2

,

where

β =

√
e− 1

2
1
6

+
√

e
= 0.632769033 . . . ,

δ = 8 4
√

α
ζ(3/2)

ζ(3)
= 4
√

α · 17.3860345 . . . ,

178

5.7 Liouville numbers

and x is large enough that

x ≥ exp(13100)

and

κ ≤ β

√
log x log log x

36 log 3ζ(3)
ζ(3/2)

+ 3 log(η log log x)
,

where

η = eγ +
5

2(log log 223092871)2
= 2.0671

Proof. In what follows, we will use ci to denote constants local to each lemma, and

Ci to denote global constants. We define the functions

E1 = E1(x) := (log x log log x)1/2

and

E2 = E2(x) :=
E1(x)

log log x
=

(
log x

log log x

)1/2

,

so with this notation our goal will be to prove that

|Pα(x)| < δ
x

e
β

12κ
E1

for some constants δ, β > 0.

We first show that we can restrict our attention to numbers satisfying both of the

following conditions for some constants 0 < C1 < C2

4κ
:

(A) if n ≤ x, the squarefull part of n is less than 1√
α
eC1E1 ,

(B) if n ≤ x, the greatest prime factor of n is greater than eC2E1 .

We first study the numbers not satisfying property (A). We will use the explicit

179

5.7 Liouville numbers

bounds for the number of squarefull numbers up to x given in Golomb [19].

Lemma 5.21. Let U(x) denote the number of squarefull n ≤ x. Then

C
√

x− 3 3
√

x ≤ U(x) ≤ C
√

x,

where C = ζ(3/2)
ζ(3)

= 2.173

Corollary 5.22. The reciprocal sum of the squarefull numbers n > x is

∑
n>x

n squarefull

1

n
=

C√
x

+ E(x)

where

−9

2

1

x2/3
≤ E(x) ≤ 3

x2/3
.

Proof. From Lemma 5.21 we have U(x) = C
√

x + E0(x) where

−3 3
√

x ≤ E0(x) ≤ 0.

Then by partial summation we have

∑
n>x

n squarefull

1

n
=

∫ ∞

x

dU(t)

t

=
U(t)

t

∣∣∣∣
∞

x

+

∫ ∞

x

U(t)

t2
dt

= − C√
x
− E0(x)

x
+
−2C√

t

∣∣∣∣
∞

x

+

∫ ∞

x

E0(t)

t2
dt

=
C√
x

+ E(x),

180

5.7 Liouville numbers

where

E(x) := −E0(x)

x
+

∫ ∞

x

E0(t)

t2
dt.

Then since

0 ≤ −E0(x)

x
≤ 3

x2/3

and

−9

2

1

x2/3
= −3

∫ ∞

x

1

t5/3
dt ≤

∫ ∞

x

E0(t)

t2
dt ≤ 0,

we have

−9

2

1

x2/3
≤ E(x) ≤ 3

x2/3
,

as asserted.

Lemma 5.23. Let the function f be nondecreasing on x ≥ x0 for some bound x0.

The number of n ≤ x with squarefull part not less than f(x) is at most

(
C√
f(x)

+
3

3
√

f(x)
2

)
x.

Proof. The number of integers n up to x with squarefull part r not less than f(x) is

bounded by
∑

r>f(x)
r squarefull

x

r
,

so by Corollary 5.22, we have the upper bound

(
C√
f(x)

+
3

3
√

f(x)
2

)
x,

proving our assertion.

181

5.7 Liouville numbers

Thus, we have that the number of n ≤ x not satisfying condition (A) is bounded

by (
C 4
√

α

e
C1
2

E1

+
3 3
√

α

e
2C1
3

E1

)
x.

We have

C 4
√

α

e
C1
2

E1

≥ 3 3
√

α

e
2C1
3

E1

when

e
C1
6

E1 ≥ 3

C
α

1
12 ,

namely when
√

log x log log x ≥ 6

C1

log
3 12
√

α

C
.

We conclude that the number of n ≤ x not satisfying condition (A) is bounded by

2C 4
√

α
x

e
C1
2

E1

for x such that
√

log x log log x ≥ 6

C1

log
3 12
√

α

C
.

To prove the result in connection with condition (B), we will use the following

lemmas.

Lemma 5.24. Let a, b > 0. Then for x > e, the minimum value of

(log x)a

(log log x)b

is
(ae

b

)b

and it occurs at

x = ee
b
a .

182

5.7 Liouville numbers

Proof. We consider the derivative

d

dx

(
(log x)a

(log log x)b

)
=

(log x)a−1

x(log log x)b

(
a− b

log log x

)
,

and note that the function has a minimum and value as given.

Now we will prove the statement in connection with condition (B).

Lemma 5.25. Let c1, c2, c3 > 0 be constants with

c1 <
√

e− 1,

c2 >
1

2
√

e
,

c1 +
√

ec2 <
√

e− 1

2
,

√
e− eC3

2
≤ c1 + C3e

3/2c2

where C3 = 1.15993801, and

c3 =
2(
√

e− c1)

1 + 2
√

ec2

.

The number of integers n ≤ x with squarefull part less than ec1E1 and greatest prime

factor not greater than ec2E1 is less than

2x

(
eC3 log log x

c3E2

)c3E2

for x ≥ 286.

Proof. We divide the numbers under consideration into two classes. In the first class

we place integers for which the number of different prime factors is less than or equal

183

5.7 Liouville numbers

to c3E2 for some c3 > 0. Since these also have squarefull part not greater than ec1E1 ,

the number of these at most x is less than or equal to the largest such number. An

upper bound for such a number is

(ec2E1)c3E2 · ec1E1 = ec2c3 log x+c1E1 =
x

e(1−c2c3) log x−c1E1
.

We note that we will need c2c3 < 1.

We now consider the second class consisting of integers not greater than x where

the number of different prime factors is greater than c3E2. Since such integers are all

multiples of integers containing at least s = bc3E2c distinct prime factors, we can let

a1, a2, . . . , at be the integers at most x which contain exactly s distinct prime factors

and bound the number of integers in the second class by

t∑
i=1

x

ai

.

By the multinomial theorem we can write

t∑
i=1

1

ai

≤ 1

s!

(∑
p≤x

1

p

)s

.

We explicitly bound this sum using the following lemmas.

To bound the reciprocal sum of primes we use the bound of Rosser and Schoenfeld

[29]
∑
p≤x

1

p
< log log x + B +

1

2 log2 x
, x ≥ 286,

184

5.7 Liouville numbers

where

B = γ +
∑

p

(
log

(
1− 1

p

)
+

1

p

)
= 0.2614972

For convenience we replace this bound by C3 log log x, where C3 is a constant chosen

to satisfy

C3 log log x > log log x + B +
1

2 log2 x
.

Since C3 must be greater than

1 +
B

log log 286
+

1

2 log2 286 log log 286
= 1.15993800 . . . ,

we choose C3 = 1.15993801. Then

t∑
i=1

1

ai

<
(C3 log log x)s

s!

for x ≥ 286. To bound s!, we will use Inequality (3.10). Using these bounds and that

s = bc3E2c, we continue with the bound

t∑
i=1

1

ai

<
1

e

(
eC3 log log x

c3E2

)c3E2

=
1

e

(
eC3

c3

√
(log log x)3

log x

)c3E2

.

We now show that for appropriately chosen constants,

1

e(1−c2c3) log x−c1E1
≤

(
eC3

c3

√
(log log x)3

log x

)c3E2

,

185

5.7 Liouville numbers

so that the second bound is larger than the first. We begin by taking logs, yielding

c1E1 − (1− c2c3) log x ≤ c3E2

(
log

(
eC3

c3

)
+

3

2
log log log x− 1

2
log log x

)
.

Dividing both sides by E2 gives

c1 log log x− (1− c2c3)E1 ≤ c3 log

(
eC3

c3

)
+

3

2
c3 log log log x− c3

2
log log x.

Thus, we need the inequality

(
c1 +

c3

2

)
log log x ≤ (1− c2c3)E1 + c3 log

(
eC3

c3

)
+

3

2
c3 log log log x

to be satisfied. Assuming c3 log(eC3/c3) ≥ 0, it will be enough to require that the

inequality
(
c1 +

c3

2

)
log log x ≤ (1− c2c3)E1 (5.9)

be satisfied. Note that the assumption is satisfied if 0 ≤ c3 ≤ eC3. The inequality

(5.9) can be written

2c1 + c3

2− 2c2c3

≤
√

log x

log log x
,

and as the right side has minimum value
√

e, we need

2c1 + c3

2− 2c2c3

≤ √
e,

or

c3 ≤ 2(
√

e− c1)

1 + 2
√

ec2

.

186

5.7 Liouville numbers

Note that this bound is smaller than the earlier bound c3 < 1/c2. Note also that

we must have c1 <
√

e. We have thus found that the two classes of numbers under

consideration are bounded by

2

(
eC3 log log x

c3E2

)c3E2

, (5.10)

provided we choose

0 < c3 ≤ min

{
eC3,

2(
√

e− c1)

1 + 2
√

ec2

}

and

c1 <
√

e.

We further impose the condition

2(
√

e− c1)

1 + 2
√

ec2

≤ eC3,

so that
√

e− eC3

2
≤ c1 + C3e

3/2c2.

Since eC3 = 3.1530 . . . and 2
√

e = 3.297 . . . , the expression on the left side of the

inequality is positive. With this condition, our bounds on c3 become

0 < c3 ≤ 2(
√

e− c1)

1 + 2
√

ec2

.

Since a larger choice of c3 gives a smaller bound (5.10), we choose

c3 =
2(
√

e− c1)

1 + 2
√

ec2

.

187

5.7 Liouville numbers

Next, we find conditions satisfying c3 > 0. Solving for

2(
√

e− c1)

1 + 2
√

ec2

> 0,

we find

c1 +
√

ec2 <
√

e− 1

2
.

We now check when the two inequalities

√
e− eC3

2
≤ c1 + C3e

3/2c2 (5.11)

and

c1 +
√

ec2 <
√

e− 1

2
(5.12)

have solutions c1, c2. Solving for c1, we have

√
e− eC3

2
− C3e

3/2c2 ≤ c1 <
√

e− 1

2
−√ec2.

For this to be a nonempty interval, we need

√
e− eC3

2
− C3e

3/2c2 <
√

e− 1

2
−√ec2.

Solving for c2, we have c2 > 1/(2
√

e).

Solving the pair of inequalities (5.11) and (5.12) for c2, we have

√
e− eC3

2
− c1

C3e3/2
≤ c2 <

√
e− 1

2
− c1√

e
.

188

5.7 Liouville numbers

this time we need √
e− eC3

2
− c1

C3e3/2
<

√
e− 1

2
− c1√

e
,

which means c1 <
√

e, which we already have. In fact, we must also consider our new

bound, c2 > 1/(2
√

e). Thus, we must have

1

2
√

e
<

√
e− 1

2
− c1√

e
.

Solving for c1, we now have c1 <
√

e−1. Likewise this bound on c1 must be compatible

with the lower bound for c1, so

√
e− eC3

2
− C3e

3/2c2 <
√

e− 1.

Thus

1− eC3

2

C3e3/2
< c2.

However, we already have 0 < c2, so this does not give an additional constraint. This

establishes the lemma.

We now compare the bounds considered thus far.

Lemma 5.26. The number of n ≤ x not satisfying properties (A) and (B) is bounded

by

4 4
√

αC
x

e
C1
2

E1

,

189

5.7 Liouville numbers

where C1 > 0 and x satisfy the following contraints: Let C2, C4 be constants with

C4 =
2(
√

e− C1)

1 + 2
√

eC2

such that C4 > C1,

C1 <
√

e− 1,

C2 >
1

2
√

e
.

In addition
√

e− eC3

2
≤ C1 + e3/2C2C3

and

C1 +
√

eC2 <
√

e− 1

2
.

Let x be sufficiently large that

log log x

log log log x
≥ 4C4

C4 − C1

,

√
log x log log x ≥ 6

C1

log
3 12
√

α

C
,

and x ≥ exp exp((eC3/C4)
2), where C3 = 1.15993801 as defined in Lemma 5.25.

Proof. Since 2 4
√

αC > 1, we apply Lemma 5.25 directly and then use the bound

2 4
√

αC
x

e
C1
2

E1

>
x

e
C1
2

E1

.

190

5.7 Liouville numbers

Thus we first consider when the inequality

1

e
C1
2

E1

≥
(

eC3 log log x

C4E2

)C4E2

is satisfied. We proceed as in Lemma 5.25 and begin by taking logs. Then we have

−C1

2
E1 ≥ C4E2

(
log

eC3

C4

+
3

2
log log log x− 1

2
log log x

)
.

Next we divide by C4E2 to get

− C1

2C4

log log x ≥ log
eC3

C4

+
3

2
log log log x− 1

2
log log x.

Rearranging so that all the terms are positive, we have

1

2

(
1− C1

C4

)
log log x ≥ log

eC3

C4

+
3

2
log log log x,

provided C1 < C4. To simplify this bound, we replace the expression log(eC3/C4) by

(1/2) log log log x, which we may do when

x ≥ exp exp

((
eC3

C4

)2
)

.

Thus, we are left to satisfy the simpler inequality

1

2

(
1− C1

C4

)
log log x ≥ 2 log log log x.

Thus, we have proved the lemma.

191

5.7 Liouville numbers

Before continuing, we state the following lemmas which we will use in the sequel.

Lemma 5.27. For natural numbers n 6= 2 or 6, every m ≤ n has at most log n

distinct prime factors.

Proof. We first check when ω(m) ≤ log m. If ω(m) = 0, then m = 1, which has

log 1 = 0 distinct prime factors. If ω(m) = 1, then all m ≥ e has log m ≥ 1 so 2

is the only exception in this case. If ω(m) ≥ 2, we have m ≥ 6 · 5ω(m)−2. This last

inequality holds if and only if

log m ≥ log 6 + (ω(m)− 2) log 5.

Solving for ω(m), we have

ω(m) ≤ log m− log 6

log 5
+ 2.

Thus, we find ω(m) ≤ log m when

log m− log 6

log 5
+ 2 ≤ log m.

Solving for log m gives

log m ≥ 2 log 5− log 6

log 5− 1
,

so we want

m ≥ (25/6)1/(log 5−1) = 10.398

For m ≤ 10 we check that the only values m such that ω(m) > log m is when

m = 2, 6.

192

5.7 Liouville numbers

In order to bound the size of α, we will make use of an explicit version of the

following standard result which can be found, for instance, as Theorem 323 in [22].

Lemma 5.28. Let N =
∏9

i=1 pi = 223092870. For natural numbers n > N =

exp(19.22 . . .), we have h(n) ≤ C6 log log n, where

C6 = eγ +
5

2(log log(N + 1))2
= 2.06715

Proof. We first observe that

h(n) =
σ(n)

n
<

n

ϕ(n)
.

Then by the Rosser and Schoenfeld [29] bound

n

ϕ(n)
< eγ log log n +

5

2 log log n

for n > N , we have for some constant C6 that

n

ϕ(n)
< C6 log log n.

To determine C6, we set

eγ log log n +
5

2 log log n
≤ C6 log log n

and solve for C6. Since n > N , we may take

C6 = eγ +
5

2(log log(N + 1))2
= 2.06715

193

5.7 Liouville numbers

This gives us our result.

It follows from this lemma that we need only consider α such that 1 < α <

C6 log log n.

Thus far our argument has not depended on our numbers being primitive α-

nondeficient. We now show that we can further restrict the set of α-pnd’s left to

consider so that, in addition to (A) and (B), they satisfy the following:

(C) The squarefree part of each such α-pnd has a divisor d with
√

αe
C2
4κ
−C1E1 < d ≤

1√
α
e

C2
2κ

E1 .

(D) If a ≤ x is an α-pnd satisfying (A) and (B), then

α ≤ h(a) < α +
α

eC2E1
.

To prove the statement regarding (C) we will use the following lemma.

Lemma 5.29. Let α > 1 and C1 ≤ C2/(4κ). An α-pnd a with 6 < a ≤ x satisfying

(A) and (B) has a divisor d such that e
C2
4κ

E1 < d ≤ 1√
α
e

C2
2κ

E1 when x is sufficiently

large that

3

2
log α + log log x ≤ C2

4

√
log x log log x.

Proof. Let a be an α-pnd with 6 < a ≤ x satisfying (A) and (B). If a contains a

prime factor in the desired interval we are done, so assume not and write a = uv,

where u contains only prime factors not greater than 1√
α
e

C2
4κ

E1 and v contains only

prime factors greater than 1√
α
e

C2
2κ

E1 . Note that by (B), v 6= 1. Now we show that

for x sufficiently large, u > e
C2
4κ

E1 . Suppose not. Since h(u) < α, we have by the

194

5.7 Liouville numbers

definition of κ that

α− h(u) = α− σ(u)

u
>

1

uκ
.

Then

h(u) < α− 1

uκ
≤ α− 1

e
C2
4

E1

.

Further,

h(v) =
∏

p|v

(
1 +

1

p

)
,

since by (A) the prime factors of v occur only to the first power. Hence by Lemma

5.27, for x > 6

h(v) <

(
1 +

√
α

e
C2
2

E1

)log x

< exp

(√
α log x

e
C2
2

E1

)
.

Consequently,

h(a) = h(u)h(v)

< exp

(
log α + log

(
1− 1

αe
C2
4

E1

)
+

√
α log x

e
C2
2

E1

)

< α exp

(
− 1

αe
C2
4

E1

+

√
α log x

e
C2
2

E1

)
.

The final line above is no greater than α when

√
α log x

e
C2
2

E1

≤ 1

αe
C2
4

E1

,

that is, when x is sufficiently large that

α3/2 log x ≤ e
C2
4

E1 .

195

5.7 Liouville numbers

For such x we have a contradiction to a being nondeficient, hence u > e
C2
4κ

E1 .

Now we factor u into prime powers so that u = pe1
1 pe2

2 · · · per
r . From (A), pei

i <

1√
α
eC1E1 if ei > 1, while pei

i < 1√
α
e

C2
4κ

E1 if ei = 1. Since C1 ≤ C2/(4κ), we have

pei
i < 1√

α
e

C2
4κ

E1 for all i.

Consider the numbers

pe1
1 , pe1

1 pe2
2 , . . . , pe1

1 pe2
2 · · · per

r .

Since u > e
C2
4κ

E1 , there is some λ such that

pe1
1 pe2

2 · · · peλ
λ < e

C2
4κ

E1 ≤ pe1
1 pe2

2 · · · peλ+1

λ+1 .

Since p
eλ+1

λ+1 < 1√
α
e

C2
4κ

E1 , it follows that

pe1
1 pe2

2 · · · peλ+1

λ+1 <
1√
α

e
C2
2κ

E1 ,

so we have found the desired divisor.

Now we can show that (C) holds. By (A), the squarefull part of the α-pnd is

less than 1√
α
eC1E1 and so any divisor satisfying the results of Lemma 5.29 must have

squarefree part between
√

αe(
C2
4κ
−C1)E1 and 1√

α
e

C2
2κ

E1 .

Next we show that (D) holds. Since a is an α-pnd, α ≤ h(a). Let p be the greatest

prime factor of the α-pnd a. Comparing (A) and (B), and since C1 < C2, we see that

p2 - a, and so

h(a) = h

(
a

p

)(
1 +

1

p

)
.

196

5.7 Liouville numbers

Since a is an α-pnd, h(a/p) < α, and so h(a) < α + α/p. Then again by (B),

h(a) < α +
α

eC2E1
,

proving (D).

Finally, we prove that the number r of α-pnd’s not greater than x satisfying

conditions (A), (B), (C), and (D) is less than

1√
α

x

e(
C2
4κ
−C1)E1

when x is sufficiently large that it satisfies the bounds of Lemma 5.29. Say they are

a1, a2, . . . , ar. From (C), the squarefree part of each ai has a divisor di such that

√
αe(

C2
4κ
−C1)E1 < di ≤ 1√

α
e

C2
2κ

E1 . Therefore,

ai

di

<
1√
α

x

e(
C2
4κ
−C1)E1

.

We now show that

ai1

di1

6= ai2

di2

so that the number of integers ai is the same as the number of integers ai/di so is less

than 1√
α
x/e(

C2
4κ
−C1)E1 .

Suppose to the contrary that

ai1

di1

=
ai2

di2

.

Then di1 6= di2 , and

h

(
ai1

di1

)
= h

(
ai2

di2

)
.

197

5.7 Liouville numbers

Then

h(ai1)

h(ai2)
=

h(di1)

h(di2)
.

Since the di are squarefree,

h(di1) 6= h(di2),

so we reindex if necessary so that

h(di1)

h(di2)
> 1.

Now

h(di1)

h(di2)
=

σ(di1)di2

σ(di2)di1

and h(di2) < α, so

σ(di2) < αdi2 ,

and so the denominator of
h(di1

)

h(di2
)

is less than αdi1di2 .

Hence

h(di1)

h(di2)
> 1 +

1

αdi1di2

> 1 +
1

α
· α

e
C2
κ

E1

> 1 +
1

eC2E1
,

while from (D), we see that

h(ai1)

h(ai2)
<

α + α/eC2E1

α
= 1 +

1

eC2E1
.

This contradicts that the two sides are equal, proving our final bound.

Comparing our two bounds

4 4
√

αC
x

e
C1
2

E1

and
1

α

x

e(
C2
4κ
−C1)E1

,

198

5.7 Liouville numbers

we observe that we may choose

C1 =
2

3
· C2

4κ
=

C2

6κ
.

It remains to check that the conditions of Lemma 5.25 are satisfied for some choice

of C2. We find for any value of κ ≥ 2 that any value of C2 such that

0.01388 · · · =
√

e− eC3

2

C3e3/2
≤ C2 ≤

√
e− 1

2
1
6

+
√

e
= 0.6327 . . .

will work. Thus, we can define C2 to be the upper bound, so that

β := C2 =

√
e− 1

2
1
6

+
√

e
= 0.6327

Using this value of C2, we determine C4:

C4 =
1
3

√
e + 2e− 1

3κ

(√
e− 1

2

)
1
6

+ 2e

= 1.06833684 . . .− 0.0683368464 . . .

κ

≥ 1.03416843.

We now determine a bound on x satisfying each of the bounds in Lemmas 5.26

and 5.29. The bound

x ≥ exp exp

((
eC3

C4

)2
)

is satisfied when x ≥ exp(10890).

For the bound

log log x

log log log x
≥ 4C4

C4 − C1

,

199

5.7 Liouville numbers

we use the upper bound C1 ≤ C2/12 when κ ≥ 2, and the lower bound C4 ≥
1.03416843. This gives the bound

log log x

log log log x
≥ 4.21491229.

By Lemma 5.24, the function

log log x

log log log x

is increases as x ≥ exp(exp(e)) increases, with a minimum value of e. With x =

exp(13100), we have

log log x

log log log x
= 4.214952

Thus, the inequality is satisfied when x ≥ exp(13100).

To bound

3

2
log α + log log x ≤ C2

4

√
log x log log x,

we use Lemma 5.28 which gives the inequality

log α < log C6 + log log log x,

along with the bound

C6 < log log x

when x > exp(exp(C6)) = exp(7.90 . . .).

Next, we bound

3 log log log x + log log x ≤ C2

4

√
log x log log x,

200

5.7 Liouville numbers

As we have observed, e log log log x ≤ log log x for x ≥ exp(exp(e)), so we need

(
3

e
+ 1

)
log log x ≤ C2

4

√
log x log log x,

which simplifies to √
log x

log log x
≥ 4

C2

(
3

e
+ 1

)
.

This bound is satisfied when x ≥ exp(1300).

Finally, we address the bound

√
log x log log x ≥ 6

C1

log
3 12
√

α

C
.

Using C1 = C2/(6κ) and Lemma 5.28, we have that x must be large enough to satisfy

κ ≤ C2

√
log x log log x

36 log 3
C

+ 3 log(C6 log log x)
.

Thus, we have proven the theorem.

This theorem allows us to prove the convergence of the sum

∞∑
i=1

φ(ci)

ci

· 1

ai

for any non-Liouville α, using the same proof as for the case α = 2. This gives us the

following corollary.

Corollary 5.30. Let {ai}∞i=1 denote the sequence of α-pnd’s for α non-Liouville, and

201

5.7 Liouville numbers

let {ci}∞i=1 be the corresponding cofactor sequence. The infinite sum

∞∑
i=1

φ(ci)

ci

· 1

ai

converges and the value is equal to dAα.

Remark 5.31. We can see that this sum is indeed infinite for any α > 1 by con-

structing a sequence of α-pnd’s. We first note that for sufficiently large primes, say

pi, i ≥ n0, where pi denotes the ith prime, we have

h(pi) = 1 +
1

pi

< α.

Now there is some r such that

h(pipi+1 · · · pi+r−1) < α ≤ h(pipi+1 · · · pi+r)

by divergence of the sum of prime reciprocals. Then pipi+1 · · · pi+r is an α-pnd. In

this way we can construct an α-pnd for each i ≥ n0.

It remains to consider the case where α is Liouville. We have already shown that

the sum of reciprocal α-pnd’s may not converge, so that we may not prove convergence

of the density sum expression in the same way as above. In [14], Erdős proves that

for any α,

Nα(x) = o

(
x

log x

)
(5.13)

as x → ∞. In fact, with minor changes to the proof, (5.13) can be shown to hold

uniformly in α.

There are two places in the proof which appear to depend on the value of α.

202

5.7 Liouville numbers

The first occurs in what he calls the first class, second subclass on p. 29. To remove

the α dependence, we observe that since h(n) = O(log log x), we need only consider

α < c log log x for some positive constant c. The second place occurs at the top of

p. 32. To remove the α dependence here, we need that the reciprocal sum of numbers

n such that h(n) = c′ for some constant c′, is bounded by some C that does not

depend on c′. We will use a result of Wirsing [37].

Theorem 5.32. Let Pα denote the set of α-perfect numbers. Then

|Pα(x)| ≤ x
c

log log x for x ≥ 3

for some c > 0, where c does not depend on α.

Using this result along with partial summation gives us that the reciprocal sum

is bounded by a universal constant C. Thus, we arrive at the following lemma.

Lemma 5.33.

Nα(x) = o

(
x

log x

)

as x →∞ uniformly in α.

In [11], Erdős also proves the following lemma.

Lemma 5.34. The number of integers n ≤ x that do not satisfy all of the following

three conditions:

(a) if pe | n and e > 1, then pe < (log x)10,

(b) the number of different prime factors of n is less than 10 log log x,

(c) the greatest prime factor of n is greater than x1/(20 log log x),

203

5.7 Liouville numbers

is o(x/(log x)2).

Using these tools, we are now in a position to extend the density sum relation of

Corollary 5.30 for α Liouville.

Theorem 5.35. Let α > 1 be real, let ai denote the ith α-pnd, and let ci = Lk/ai,

where Lk is defined in (5.6). Then

dAα =
∞∑
i=1

φ(ci)

ci

· 1

ai

.

Proof. We partition the set of α-pnd’s ai ≤ x into two classes. In the first class we

have those not satisfying all three conditions listed in Lemma 5.34. Since the number

of these is o(x/(log x)2), the reciprocal sum of these α-pnd’s converges.

For the second class consisting of those α-pnd’s that do satisfy the conditions

listed in Lemma 5.34, we argue as follows. First we note that

ϕ(Lk/ai)

Lk/ai

· 1

ai

≤ ϕ(Lk)

Lk

· ai

ϕ(ai)
· 1

ai

=
ϕ(Lk)

Lk

· 1

ϕ(ai)
.

Next we estimate ϕ(Lk)/Lk and ϕ(ai). By condition (c), we have that ai, and thus

also Lk, contains primes greater than x1/(20 log log x). Then by definition of Lk and

F (x),

ϕ(Lk)

Lk

≤ F (x1/(20 log log x)) = O

(
log log x

log x

)
.

By condition (b) we can bound ϕ(n)/n by

ϕ(n)

n
≥ F (pω(n)) ≥ F (10 log log n log log log n) ∼ e−γ

log log log n
,

where here pi denotes the ith prime.

204

5.8 Organization

Thus, for large x, our ai satisfy

1

ϕ(ai)
≤ eγ log log log x

ai

.

Putting our estimates together, we find that

ϕ(Lk/ai)

Lk/ai

· 1

ai

≤ f(x)

ai

where

f(x) = O

(
log log x log log log x

log x

)
.

Thus, the sum over ai that are α-pnd’s satisfying our conditions is

∑
ai≤x

ϕ(Lk/ai)

Lk/ai

· 1

ai

= O

(∑
ai≤x

log log ai log log log ai

ai log ai

)
.

Since the number of α-pnd’s up to x is bounded by (5.13), the sum converges by

partial summation. Thus, we have shown convergence of the sum over α-pnd’s in the

second class. We conclude that the density expression holds.

5.8 Organization

We now introduce a method of organizing natural numbers in line with the notion of

significance. Consider a natural number n > 1 with the canonical factorization

n =
∏

pi|n
pei

i .

205

5.8 Organization

Taking h of both sides, we have

h(n) =
∏

pi|n
h(pei

i) =
∏

pi|n

ei∏
j=1

h(pj
i)

h(pj−1
i)

.

Now observe that

h′(pj) :=
h(pj)

h(pj−1)
= 1 +

1

σ(pj)− 1
. (5.14)

Thus, h(n) is a product of factors having form 1 + 1/(σ(pe)− 1), and the number of

such factors is the same as the number of prime factors p counted with multiplicity. If

the factors (5.14) are ordered according to decreasing significance of pj, this ordering

induces an ordering on the prime factors of n. We will call this the factorization

of n according to prime significance (as opposed to prime power significance). For

instance, if n = 2372, we would factor h(2372) as

h(2372) = h′(2)h′(22)h′(7)h′(23)h′(72),

since

sig(2) > sig(22) > sig(7) > sig(23) > sig(72).

Then the induced ordering of prime factors is

2372 = 2 · 2 · 7 · 2 · 7.

Suppose that n = p1 · · · pk is ordered in this way. Write ni = p1 . . . pi, so that in

particular n = nk. Then we have that h(ni) is an α-pnd for any α in the interval

(h(ni−1), h(ni)]. This implies that for any choice of α in [1, h(n)], there exists a well-

206

5.8 Organization

defined divisor of n which is an α-pnd. We will call this the significant α-pnd of n,

and as usual we may drop the α when α = 2.

In the above example of 2372, we have intervals

{h(1)}, (h(1), h(2)], (h(2), h(22)], (h(22), h(227)], (h(227), h(237)], (h(237), h(2372)],

namely

{1}, (1, 3
2

]
,
(

3
2
, 7

4

]
,
(

7
4
, 2

]
,
(
2, 15

7

]
,
(

15
7
, 855

392

]
.

Now we can read off the significant α-pnd for 2372 for any α in [1, h(2372)]. For

instance, the significant pnd of 2372 must be 227 since 2 falls in the interval (7
4
, 2] =

(h(22), h(227)]. If we instead wanted the significant ζ(2)-pnd, we note that ζ(2) =

1.644 · · · ∈ (1.5, 1.75] = (h(2), h(22)], so this would be 22.

The notion of significant α-pnd’s provides a more natural proof that the density

of α-abundants has the form

∑

a an α-pnd

φ(c(a))

c(a)
· 1

a

for some function c(n). Namely, we partition the set A ′
α of α-nondeficient numbers

according to significant α-pnd of its members. Let A ′
α[a] be the set of α-nondeficient

numbers with a as their significant α-pnd. We can factor such a number n as n = ma.

The only primes which cannot divide m are those primes p such that either p - a and

sig(p) < sig(a), or pe‖a and sig(pe+1) < sig(a). If we extend the definition of the

symbol ‖ so that p - n =⇒ p0‖n, then we can combine the conditions on m so that

207

5.9 An α-pnd listing algorithm

p cannot divide m where pe‖a and sig(pe+1) < sig(a). Thus,

c(a) =
∏

pe‖a
sig(pe+1)<sig(a)

p.

Thus, we have that

dA α′
a =

φ(c(a))

c(a)
· 1

a
,

and the theorem can be completed as before.

5.9 An α-pnd listing algorithm

Viewing natural numbers in terms of their prime significance factorization allows

us to describe an algorithm for finding all elements of the set Pk
α of α-pnd’s with

significance bounded below by sig(pek
k), where pek

k is the kth term of the sequence P

of prime powers ordered by decreasing significance. We recall the notation Lk for the

lcm of the first k terms of the sequence P . We now define Lj,k to be the lcm of the

terms pei
i for i = j +1, . . . , k of P . Thus, L0,k = Lk. We will now describe an iterative

method that will eventually find all members of Pk
α.

Fix α ≥ 1. If α = 1, then 1 is the only 1-pnd, so P1 = {1} and we are done.

Otherwise α > 1. Let n = 1 and i = 1. The iterative step takes a number n such

that h(n) < α and i such that sig(n) = sig(pei
i). Next we determine primes p which

may be multiplied to the current value of n so that pn is a potential α-pnd. These

are precisely the primes p that do not divide Li/n but do divide Li,k. For each such

prime p, if

α ∈ (h(n), h(np)] ,

208

5.9 An α-pnd listing algorithm

then we include np in our list of α-pnd’s. Otherwise α > h(np), and we begin a new

iteration with the number np such that h(np) < α, and the index i′ of the prime

power p
ei′
i′ such that sig(np) = sig(p

ei′
i′). Once the primes p are exhausted, we return

from the iteration. We will call this the α-pnd listing algorithm.

To illustrate, we will give the example of the tree found using the α-pnd listing

algorithm corresponding to α = 2, pe7
7 = 32. Off of n = 1, we build branches for each

prime p | L7 = 22 · 32 · 5 · 7 · 11. If there are permissible primes, these primes continue

to branch off previous primes. We eventually arrive at the following tree.

1

ggggggggggggggggggggggggggggggg

nnnnnnnnnnnnnnnn

PPPPPPPPPPPPPPPP

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

2

¢¢
¢¢

¢¢
¢¢

3

nnnnnnnnnnnnnnnn

||
||

||
||

|

BB
BB

BB
BB 5

@@
@@

@@
@@ 7 11

∗ 3 5

~~
~~

~~
~~

BB
BB

BB
BB 7

BB
BB

BB
BB 11

@@
@@

@@
@@

7

@@
@@

@@
@@ 11 11

3 7

~~
~~

~~
~~

11 11 3 11

3 11 3 3

3

The branch terminating with the boldface 3 denotes the discovery of the pnd 3 · 5 · 7 ·
11 · 3, while the other branches have terminated due to using up all allowed primes.

209

5.9 An α-pnd listing algorithm

We complete the part of the tree marked by ∗ below.

∗

nnnnnnnnnnnnnnn

ÄÄ
ÄÄ

ÄÄ
Ä

AA
AA

AA
AA

QQQQQQQQQQQQQQQ

2

~~
~~

~~
~~

3 5

¡¡
¡¡

¡¡
¡

@@
@@

@@
@@ 7

BB
BB

BB
BB 11

7 11 2 7 11 11

Again we have some branches terminating in boldface indicating pnd’s, and other

branches that have run out of usable primes.

However, this tree has so many nodes that it would not be practical to use this in

a program, as it will take too long to traverse this tree. We can see this by estimating

the number of these as follows. We first determine an upper bound for the number

of nodes that must be traversed to find all of the specified α-pnd’s. This can be seen

by counting the number of nodes on a tree built in the following way: Begin with a

root labeled by the number 1. Append branches pi to the root for i = 1, . . . , k, where

k is the number of prime powers having significance bounded by sig(pek
k). At each

node pi, append branches pj, j = i + 1, . . . , k. We note that the number of nodes

is an upper bound for the number of α-pnd’s with significance bounded by sig(pek
k).

Observe that the number of nodes in this tree is the same as the number of subsets

that can be formed from k objects, so there are 2k nodes. We bound k by π(2y),

where we set y = pek
k . This can be seen by noting first that k is less than the number

of prime powers bounded by 2y. We have pe ≤ 2y so e ≤ log 2y/ log p. Thus, we must

bound

log 2y
∑
p≤2y

1

log p
.

By partial summation this is O(y/ log y). Thus, the algorithm will eventually find all

210

5.10 The α-pnd density algorithm

of the specified α-pnd’s by traversing at most 2O(y/ log y) nodes.

5.10 The α-pnd density algorithm

Rather than using the tree in the previous section to identify the α-pnd’s, we have

the following alternate method. We will want to compute the prime factorization

of each α-pnd ai up to some bound z. To do this, we can use a modified sieve of

Eratosthenes to identify the prime factorizations of numbers up to z. This can be

done in O(z log log z) steps. Simultaneously, we can keep track of the h value of each

number as well as the σ value of the prime power factors. We check for α-abundancy

and discard the α-deficient numbers. Of the remaining numbers, we identify the

least significant prime power pe and calculate h(a/p) to determine primitivity. This

amounts to checking for the largest σ value of prime power factors of n.

We also wish to compute the ci corresponding to ai. In fact, ci is very large in

general so we find the value ϕ(ci)/ci instead. In preparation, we set up an array

of values of ϕ(Lk)/Lk, where the largest k needed is determined by determining the

largest k satisfying

σ(pek
k) = max{σ(pe) : pe ≤ z}.

This array has O(π(z)) entries. To find ϕ(ci)/ci, we begin with ϕ(Lk)/Lk, for the k

corresponding to ai. Then we adjust this value with the prime powers in ai that divide

Lk to the highest power that Lk has. The appropriate prime powers pe‖ai can be found

by checking that they satisfy sig(pe+1) < sig(ai), where sig(ai) is the significance of the

least significant prime power dividing ai. Once ϕ(ci)/ci is determiend, it is multiplied

211

5.10 The α-pnd density algorithm

to 1/ai and is added on to a running sum to determine

∑
ai≤z

ϕ(ci)

ciai

. (5.15)

The multiplications involved take O((log z)2) steps, as discussed in Subsection 3.3.1.

Thus the time spent calculating a lower bound for the density of α-abundant numbers

is

O
(
z(log z)2 log log z

)
. (5.16)

This bound, along with the calculation for Theorem 5.15, allows us to determine

an upper bound for the running time of the α-pnd algorithm. We will now repeat

this argument more carefully by making everything explicit. In what follows, we will

refer to the upper bound estimate of the tail sum

∑
ai>z

ϕ(ci)

ciai

as the error of the α-pnd algorithm, and the parameter z as the α-pnd bound. The

value of the error is what we must add to the truncated sum lower bound (5.15) to

arrive at an upper bound for the density of the α-abundants.

Theorem 5.36. For α non-Liouville, the error of the α-pnd algorithm with α-pnd

bound z is bounded by

∑
ai>z

ϕ(ci)

ciai

≤ −|Pα(z)|
z

+
12δκ

β − 6κ
(log z log log z)1/2

(
log z

log log z

)1/2

exp

(
− β

12κ
(log z log log z)1/2

)

212

5.10 The α-pnd density algorithm

where the sum is over α-pnd’s ai > z, ci = Lk/ai, where Lk is defined in (5.6), Pα is

the set of α-pnd’s, and β, δ, and κ are defined in Theorem 5.20.

Proof. We use partial summation and Theorem 5.20.

∑
a>z

1

a
= −|Pα(z)|

z
+

∫ ∞

z

|Pα(t)|
t2

dt

≤ −|Pα(z)|
z

+ δ

∫ ∞

z

1

teβ/(12κ)(log t log log t)1/2
.

To bound the integral in the last line above, we use the integral

c

∫ ∞

z

(
1 +

1

log log t

)
dt

tec(log t log log t)1/2
=

(
log z

log log z

)1/2
1

ec(log z log log z)1/2

+
1

2

∫ ∞

z

1

t(log t log log t)1/2

(
1− 1

log log t

)
dt

ec(log t log log t)1/2
.

From this, we have the bound

∫ ∞

z

dt

tec(log t log log t)1/2
≤ 1

c

(
log z

log log z

)1/2
1

ec(log z log log z)1/2

+
1

2c (log z log log z)

∫ ∞

z

dt

tec(log t log log t)1/2
.

By solving this inequality for our desired integral, we have

∫ ∞

z

dt

tec(log t log log t)1/2
≤ 1

c
(
1− 1

2c(log z log log z)1/2

)
(

log z

log log z

)1/2
1

ec(log z log log z)1/2
.

This gives us our result.

Now suppose we want the error to be within 10−d for some d. For α non-Liouville,

213

5.10 The α-pnd density algorithm

we have by Theorem 5.36 that it suffices to have

10−d ≤ 12δκ

β − 6κ
(log z log log z)1/2

(
log z

log log z

)1/2
1

e
β

12κ
(log z log log z)1/2

,

with bounds on z and κ as stated in Theorem 5.36. In particular, we have the bounds

κ ≤ β
(log z log log z)1/2

36 log 3ζ(3)
ζ(3/2)

+ 3 log(η log log z)

and z ≥ exp(13100). We use these to bound

12δκ

β − 6κ
(log z log log z)1/2

≤ 1

1− 1

6 log
3ζ(3)
ζ(3/2)

+ 1
2

log(η log(13100))

12δκ

β
.

We will let

λ =
1

1− 1

6 log
3ζ(3)
ζ(3/2)

+ 1
2

log(η log(13100))

= 1.4128

It thus suffices to have

10−d ≤ 12δλκ

β

(
log z

log log z

)1/2
1

e
β

12κ
(log z log log z)1/2

.

Taking logs and multiplying by −1, we get

(log 10)d ≥ − log

(
12δλκ

β

)
− 1

2
log

(
log z

log log z

)
+

β

12κ
(log z log log z)1/2.

Noting that 12δλκ/β > 1 for all α ≥ 1, it suffices to have

(log 10)d ≥ β

12κ
(log z log log z)1/2,

214

5.10 The α-pnd density algorithm

or

zlog log z ≤ e(
12(log 10)κd

β)
2

.

Since the running time t is

O
(
z(log z)2 log log z

)
,

for some constant c we have

t < cz(log z)2 log log z.

We now use the bounds

log z log log z ≤
(

12(log 10)κd

β

)2

and

z log z = elog z+log log z < elog z log log z ≤ e(
12(log 10)κd

β)
2

to arrive at the following result.

Theorem 5.37. For α non-Liouville, the α-pnd algorithm described above can deter-

mine the density of abundant numbers to d decimal digits in at most t time, where

t < c

(
12(log 10)κd

β

)2

e(
12(log 10)κd

β)
2

,

where c is an absolute constant and β and κ are defined in Theorem 5.20.

For α Liouville, we use Lemma 5.33. Again, we use partial summation to find the

following.

215

5.10 The α-pnd density algorithm

Lemma 5.38. For α Liouville, the error bound for the α-pnd method with α-pnd

bound z is
∑
ai>z

ϕ(ci)

ciai

= O

(
log log z log log log z

log z

)
,

where the sum is over α-pnd’s ai > z, ci = Lk/ai, and Lk is defined in (5.6).

By this lemma, we see that for the error to be within 10−d, we must have

d > log log z.

Then with the same time bound

t < cz(log z)2 log log z,

we find the following.

Theorem 5.39. For α Liouville, the α-pnd algorithm can determine the density of

abundant numbers to d decimal digits in at most t time, where

t < cde2deed

,

where c is an absolute constant.

Thus we find that when α is Liouville, the time grows at worst double exponentially

with the number of desired digits, just as we found for the Deléglise algorithm. In

contrast, when α is non-Liouville, we have an improved bound of time growing at

worst single exponentially with the number of desired digits.

216

5.11 A result of Shapiro

5.11 A result of Shapiro

In [32], Harold Shapiro proves that if there are infinitely many α-p.n.d’s with k distinct

prime factors, then α can be expressed as

α =
σ(a)

a
· b

φ(b)
, (a, b) = 1, b > 1, (5.17)

and ω(a)+ω(b) < k. That these conditions are also sufficient was proven by Shapiro in

[33]. Using our theory of significance, we provide a streamlined proof of the sufficiency

of Shapiro’s theorem. In preparation, we build two tools which may be of independent

interest.

5.11.1 The capping off lemma

We first characterize when an α-deficient number a′ can be augmented by a prime

power pe with sig(pe) < sig(a′) so that a′pe is an α-pnd.

Lemma 5.40 (The capping-off lemma). Given a number a′ = pe1
1 · · · pek

k with pek
k

having minimal significance in a′, and a real α > h(a′), a′p is an α-pnd with sig(p) <

sig(a′) if and only if p is a prime in the interval

σ(pek
k)− 1 < p ≤ h(a′)

α− h(a′)
.

In addition, for any α-deficient a′ there is at most one prime power pe, e > 1, such

that (p, a′) = 1, and a = a′pe is an α-pnd. In fact, the prime must lie in the interval

h(a′)
α− h(a′)

< p <
h(a′)

α− h(a′)
+ 1.

217

5.11 A result of Shapiro

If there is such a prime p, then the exponent e is

e =




log
(

h(a′)
h(a′)−α(1−1/p)

)

log p
− 1




,

where dxe denotes the ceiling of x.

For any α-pnd a there is a number a′ such that for some prime power pe with

sig(pe) < sig(a′), a = a′pe.

Proof. Note that a number a′p is an α-pnd with sig(a′) > sig(p) if and only if h(a′p) ≥
α and σ(pek

k) < σ(p). We show that the latter inequality is strict since it is not possible

for a prime p to have the same σ value as a prime power distinct from p. For suppose

not and σ(p) = σ(qe) for a prime power qe. If q = p, then e > 1, but this means σ(qe)

is strictly greater than σ(p). Otherwise q 6= p. But then

p + 1 = qe + qe−1 + · · ·+ q + 1,

which is absurd since, upon subtracting 1, the right side is divisible by q while the

left is equal to p. Thus, we have σ(pek
k) < σ(p). We now solve each of the inequalities

h(a′)
(

1 +
1

p

)
≥ α and σ(pek

k) < p + 1

for p, yielding

σ(pek
k)− 1 < p ≤ h(a′)

α− h(a′)
.

Suppose a = a′pe is an α-pnd with e > 1 and (p, a′) = 1. Since a is an α-pnd, we

218

5.11 A result of Shapiro

have

h(a′pe−1) < α ≤ h(a′pe).

Then

h(pe−1) <
α

h(a′)
≤ h(pe),

and it is clear that at most one power e for a given prime p can satisfy the above

inequalities since for e = 2, 3, . . . , the intervals (h(pe−1), h(pe)] partition the interval

(h(p), p/(p− 1)). To see that two primes cannot have overlapping intervals, we write

the interval for p as (1 + 1/p, 1 + 1/(p− 1)). Thus, there is at most one prime power

pe that satisfies our conditions. Solving the inequalities

1 +
1

p
<

α

h(a′)
< 1 +

1

p− 1
,

for p, we arrive at

h(a′)
α− h(a′)

< p <
h(a′)

α− h(a′)
+ 1.

Solving the inequalities
1− 1

pe

1− 1
p

<
α

h(a′)
≤

1− 1
pe+1

1− 1
p

for e gives

log
(

h(a′)
h(a′)−α(1−1/p)

)

log p
− 1 ≤ e <

log
(

h(a′)
h(a′)−α(1−1/p)

)

log p
.

The final statement can be seen by writing a = a′pek
k , where sig(pek

k) = sig(a).

Since we know that pek
k exists, it can be found by one of the two methods of capping-

off, depending on whether ek = 1 or not.

Remark 5.41. Note that not all α-deficient numbers a′ have a prime p such that

219

5.11 A result of Shapiro

sig(a′) > sig(p) and a′p is an α-pnd. An interesting example is when α = 2 and we

choose a′ = 2n. Then we must find a prime p such that

2n+1 − 2 < p ≤ 2n+1 − 1,

namely a prime p = 2n+1 − 1. A number Mn := 2n − 1 is called a Mersenne number,

and if Mn is prime, it is called a Mersenne prime. It is known that Mn is not prime

unless n is prime, so we cannot always find a prime p to “cap off” a′ = 2n. In the

event that there is a prime p to cap off 2n, the pnd 2np is in fact a perfect number,

as proven by Euclid. The pair α = 2, a′ = 2n also gives us an example of an a′ which

cannot be capped off by pe, e > 1, since there is no prime p in the interval

2n+1 − 1 < p < 2n+1

(as there is not even an integer in it).

Now suppose we choose α = 2 and a′ = q, where q is prime. Then we seek primes

p such that

q < p ≤ 1 +
2

q − 1
.

This inequality is satisfied only when q = 2, in which case we have the prime p = 3.

We have found the pnd 6, which is also perfect. We now try to cap off a prime by a

prime power pe, e > 1. We must find when there is a prime p with

1 +
2

q − 1
< p < 2 +

2

q − 1
.

For q = 2 and 3, the interval does not contain integers. For q ≥ 5, the interval

220

5.11 A result of Shapiro

contains only the prime p = 2. Using the inequality

1− 1
pe

1− 1
p

<
α

h(a′)
≤

1− 1
pe+1

1− 1
p

,

we find that

2e < q + 1 < 2e+1.

Thus, for instance, if q = 5, then e = 2 so 20 is a pnd (but not a perfect one).

We have just found all pnd’s a with ω(a) = 2. To see this, first we note that

lime→∞ h(3e)h(5e) = 3/2 · 5/4 < 2, so a cannot be odd. So we write a = 2ep for p a

prime greater than 2 and check when

h(2e−1p) < 2 ≤ h(2ep)

is satisfied. Solving for p + 1, we find

2e < p + 1 ≤ 2e+1,

which is covered by the two classes of pnd’s we have found.

5.11.2 The offspring lemma

We now describe a method to iteratively find an infinite sequence of α-pnd’s, each

member being used to find the next α-pnd, with the number of distinct prime factors

increasing by 1 at each step.

Lemma 5.42 (The offspring lemma). For each α-pnd a1, there exists an α-pnd a2

such that ω(a2) = ω(a1) + 1. We can construct a2 depending on the exponent e of

221

5.11 A result of Shapiro

the least significant prime power pe of a1 and the exponent e1 of the prime power

P (a1)
e1‖a1. If e = 1, either (1) or (2) may be used. If e > 1 and e1 = 1, we use (2a).

Otherwise e > 1 and e1 > 1, in which case we use (2b).

(1) If e = 1, then we can choose a2 = (a1/p)q1q2 where q1 is the smallest prime

such that (a1/p)q1 is α-deficient, and q2 is the prime after q1.

(2) For any e ≥ 1, we split into two subcases, depending on whether the exponent

e1 of the prime P (a1) in a1 is 1 or not.

(a) If e1 = 1, then we can choose a2 to be the canonical α-pnd dividing

(a1/P (a1))q1q2, where q1 is the smallest prime such that (a1/P (a1))q1 is

α-deficient, and q2 is the prime after q1.

(b) If e1 > 1, then we can choose a2 to be the canonical α-pnd dividing

(a1/P (a1))q1, where q1 is the largest prime below σ(P (a1)
e1).

Proof. We begin with the first case when e = 1. Write a′1 = a1/p. Since a′1q1 is

α-deficient, q1 > p, so sig(q2) < sig(a′1q1). Thus, it remains to show that a′1q1q2 is

α-abundant. Suppose not. Then

h(a′1q1q2) < α ≤ h(a′1p),

so in particular

(
1 +

1

q1

)(
1 +

1

q2

)
= h(q1q2) < h(p) = 1 +

1

p
.

However, we have the following result which contradicts this inequality, thus estab-

lishing the lemma for the case e = 1.

222

5.11 A result of Shapiro

Lemma 5.43. Let p0 < p1 < p2 be consecutive primes. Then

1 +
1

p0

<
p0

p0 − 1
<

(
1 +

1

p1

)(
1 +

1

p2

)
.

In addition, for p0 = 2, 3, 5,

1 +
1

p0

<

(
1 +

1

p1

)(
1 +

1

p2

)
.

Proof. The first inequality is evident by cross-multiplication. To prove the second

inequality we rely on the following two-prime variant of Bertrand’s postulate due to

Ramanujan [28], namely

π(x)− π(x/2) ≥ 2, x ≥ 11.

Then letting x = 2p0 we have p2 ≤ 2p0. Moreover, since p0 and p2 are prime,

p2 ≤ 2p0 − 1, or p0 − 1 ≥ (p2 − 1)/2. Thus,

1 +
1

p0 − 1
< 1 +

2

p2 − 1
<

(
1 +

1

p2 − 2

)(
1 +

1

p2

)
≤

(
1 +

1

p1

)(
1 +

1

p2

)
,

establishing the lemma for p0 ≥ 11/2. The final inequality may be verified by direct

calculation.

We now turn to the second case where e ≥ 1. Let a′1 = a1/P (a1). For the first

subcase where e1 = 1, we can repeat the argument proving case 1 to show that a′1q1q2

is α-abundant. Thus, it remains to show that the canonical α-pnd dividing a′1q1q2

contains the prime q2. But any divisor of a′1q1q2 not containing q2 is deficient, so we

are done with this subcase.

223

5.11 A result of Shapiro

For the second subcase where e1 > 1, we first show that a′1q1 is α-abundant. Since

h(a′1)h(q1) > h(a1), it remains to show that q1 - a′1. But by Bertrand’s postulate,

q1 >
σ(P (a1)

e1)

2
≥ σ(P (a1)

2)

2
> P (a1).

We now argue as in the first subcase that the canonical α-pnd dividing a′1q1 must

contain q1, since any divisor of a′1 is deficient. This completes the proof of the lemma.

The offspring lemma allows us, for instance, to find an infinite sequence of square-

free pnd’s by starting with a squarefree pnd and using construction (1). Thus,

2 · 3, 2 · 5 · 7, 2 · 5 · 11 · 13, 2 · 5 · 11 · 59 · 61, . . .

are all pnd’s.

5.11.3 A proof of Shapiro’s theorem

We are now prepared to prove Shapiro’s theorem. Suppose there are infinitely many

α-pnd’s composed of k primes. We arrange them in order of significance. Then,

taking ai to be the ith α-pnd in this sequence, and sig(ai) = sig(pek
k), we have

h(ai)

(
1− 1

σ(pek
k)

)
= h(ai)

(
h(pek−1

k)

h(pek
k)

)
< α ≤ h(ai).

Since σ(pek
k) → ∞, we have h(ai) → α. We now determine limi→∞ h(ai). We factor

ai as

ai = pei1
i1 · · · peik

ik ,

224

5.11 A result of Shapiro

where the primes pij are decreasing in j. Now for each j we examine the sequence in

i of primes pij. Let k′ be the smallest j such that there is a constant subsequence.

Thus, limi→∞ h(p
eij

ij) = 1 for j < k′. Now we pass to this subsequence, and call the

prime constant pk′ , so that now pik′ = pk′ . Since the primes of ai are in decreasing

order, pi(k′−1) < pk′ , so we may now pass to an infinite subsequence where pi(k′−1) is

constant. This process is continued until we have a subsequence where pij is constant

in i for all j ≥ k′.

Now we examine the eij for i ≥ k′. For each eij that is unbounded in i, we pass to

a subsequence where limi→∞ eij = ∞. Then we have h(p
eij

j) → pj/(pj−1) = pj/ϕ(pj).

The product of these primes is b.

The remaining primes have a sequence eij bounded in i. Thus, we can pass to an

infinite subsequence such that eij is constant in i. We call this constant ej. Then the

product of these prime powers p
ej

j is a, and we have α = h(a) · b/ϕ(b), as claimed.

We now prove sufficiency. Let α satisfy Equation (5.17). Since the function n/φ(n)

is multiplicative and for each prime p, pe/φ(pe) is constant over all e ≥ 1, we can

assume that the given b is squarefree. Noting that as e → ∞, we have h(be) ↗ b
φ(b)

,

we also have as e →∞ that h(abe) ↗ α, so defining x by

1 +
1

x
=

α

h(abe)
,

any prime p ≤ x and (p, ab) = 1 will make abep α-abundant. Let e be sufficiently

large that x > 2σ(a)P (b). Then by Bertrand’s postulate, we can choose p to be any

prime in the interval (σ(a)P (b), x]. Let a1 be the significant α-pnd of abep. We have

that all primes dividing abep must divide a1 since if not, p - a1, contradicting that abe

is α-deficient. We also have that a | a1 since sig(a) > sig(p). By the offspring lemma,

225

5.11 A result of Shapiro

since we have found an α-pnd with k prime factors, there are α-pnd’s for any number

of prime factors greater than k. This proves anew the sufficiency part of Shapiro’s

theorem.

226

Bibliography

[1] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New

York, 1976, Undergraduate Texts in Mathematics.

[2] M. R. Avidon, On the distribution of primitive abundant numbers, Acta Arith.

77 (1996), no. 2, 195–205.

[3] F. Behrend, Über numeri abundantes, Sitzungsberichte Akad. Berlin (1932), 322–

328.

[4] , Über numeri abundantes, II, Sitzungsberichte Akad. Berlin (1933), 280–

293.

[5] H. Davenport, Über numeri abundantes, Sitzungsberichte Akad. Berlin (1933),

830–837.

[6] N. G. De Bruijn, On the number of uncancelled elements in the sieve of Er-

atosthenes, Nederl. Akad. Wetensch., Proc. 53 (1950), 803–812 = Indagationes

Math. 12, 247–256 (1950).

[7] N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory

of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25–32.

227

BIBLIOGRAPHY

[8] M. Deléglise, Bounds for the density of abundant integers, Experiment. Math. 7

(1998), no. 2, 137–143.

[9] L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primal-

ity., Chelsea Publishing Co., New York, 1966.

[10] P. Dusart, Inégalités explicites pour ψ(X), θ(X), π(X) et les nombres premiers,

C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53–59.

[11] P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9

(1934), 278–282.

[12] , On primitive abundant numbers, J. London Math. Soc. 9 (1935), 49–58.

[13] , Some remarks about additive and multiplicative functions, Bull. Am.

Math. Soc. 52 (1946), 527–537.

[14] , Remarks on number theory I. On primitive α-abundant numbers, Acta

Arith. 5 (1958), 25–33.

[15] , On the distribution of numbers of the form σ(n)/n and on some related

questions, Pacific Journal of Mathematics 52 (1974), no. 1, 59–65.

[16] P. Erdős and A. Wintner, Additive arithmetical functions and statistical inde-

pendence, Amer. J. Math. 61 (1939), 713–721.

[17] J. W. L. Glaisher, On the sums of the inverse powers of the prime numbers,

Quart. J. Pure Appl. Math. 25 (1891), 347–362.

[18] J. R. Goldman, The queen of mathematics, A K Peters Ltd., Wellesley, MA,

1998, A historically motivated guide to number theory.

228

BIBLIOGRAPHY

[19] S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848–855.

[20] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, second

ed., Addison-Wesley Publishing Company, Reading, MA, 1994, A foundation for

computer science.

[21] A. Granville, Smooth numbers: computational number theory and beyond, Algo-

rithmic number theory: lattices, number fields, curves and cryptography, Math.

Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 267–

323.

[22] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth

ed., The Clarendon Press Oxford University Press, New York, 1979.

[23] A. Hildebrand, On the number of positive integers ≤ x and free of prime factors

> y, J. Number Theory 22 (1986), no. 3, 289–307.

[24] A. Ivić, The distribution of primitive abundant numbers, Studia Sci. Math. Hun-

gar. 20 (1985).

[25] N. Koblitz, A course in number theory and cryptography, second ed., Graduate

Texts in Mathematics, vol. 114, Springer-Verlag, New York, 1994.

[26] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Clas-

sical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge

University Press, Cambridge, 2007.

[27] Paul Pollack, Not always buried deep. A second course in elementary number

theory, American Mathematical Society, Providence, RI, 2009.

229

BIBLIOGRAPHY

[28] S. Ramanujan, A proof of Bertrand’s postulate [J. Indian Math. Soc. 11 (1919),

181–182], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Provi-

dence, RI, 2000, pp. 208–209.

[29] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of

prime numbers, Illinois J. Math. 6 (1962), 64–94.

[30] H. Salié, Über die Dichte abundanter Zahlen, Math. Nachr. 14 (1955), 39–46.

[31] I. Schoenberg, Über die asymptotische verteilung reeller zahlen mod 1, Math. Z.

28 (1928), 171–199.

[32] H. N. Shapiro, Note on a theorem of Dickson, Bull. Amer. Math. Soc. 55 (1949),

450–452.

[33] , On primitive abundant numbers, Comm. Pure Appl. Math. 21 (1968),

111–118.

[34] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cam-

bridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press,

Cambridge, 1995, Translated from the second French edition (1995) by C. B.

Thomas.

[35] C. R. Wall, Density bounds for the sum of divisors function, The theory of arith-

metic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971),

Springer, Berlin, 1972, pp. 283–287. Lecture Notes in Math., Vol. 251.

[36] C. R. Wall, P. L. Crews, and D. B. Johnson, Density bounds for the sum of

divisors function, Math. Comp. 26 (1972), 773–777.

230

BIBLIOGRAPHY

[37] E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137

(1959), 316–318.

231

