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Abstract

In [3, 4], Behrend initiates the study of the asymptotic density of abundant numbers.
More recently Deléglise [8] used Behrend’s upper bound ideas to calculate improved
bounds on this density. In this work, we make further improvements to the Deléglise
algorithm to determine new bounds on the density of abundant numbers. We will
also turn Behrend’s lower bound idea into an alternative method of bounding the

density.
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Chapter 1

Introduction

1.1 Numbers, perfect and otherwise

From antiquity there has been a fascination with numbers considered perfect, that is,
those numbers whose proper divisors sum to the numbers themselves. The sequence

of perfect numbers then known was
6, 28, 496, 8128,

and various assertions were made concerning these numbers, such as:
(a) There are infinitely many perfect numbers.
(b) All perfect numbers are even.

Euclid’s proof that if a prime number p = 2! — 1 for some natural number n then
2™p is perfect, may have bolstered the belief in these statements. In fact, if they had

access to the list of currently known perfect numbers, they would have nothing to



1.2 Natural density

amend. As of July 2010, 47 perfect numbers were known, all even. (Of course, it can
be argued that the computer programs used to find the largest of these were only
looking for the even ones.) Nevertheless, the proof of the original claims remain as
elusive today as ever. These are among the oldest problems in mathematics. [18]

What about numbers that are not perfect? As early as c. 100 A.D., Nicomachus
[9] classified these into two categories: If a number was found to have a sum of
aliquot parts which exceeds the number itself, it was considered abundant; if the sum
was smaller, it was called deficient. In contrast to the high opinion that the perfect
numbers received, the abundant and deficient numbers were often scorned as being of
an inferior class. This feeling may be detected in some alternative ways in which the
numbers were referred, such as the rather dramatic terms superfluous and defective for
abundant and deficient numbers, respectively. There is even a hint of this remaining
in the modern term ‘deficient,” which word still has a negative connotation.

Turning our attention to mathematics, a natural (and neutral) question to ask
about these numbers is: How many are there of each type? As we have indicated,
it is still not known how many perfect numbers there are, whether there are finitely
many or infinitely many. But we do know that there are infinitely many numbers in
each of the other categories. In fact, we know more: there are more deficient numbers

than abundant, in a sense that we will make precise in the next section.

1.2 Natural density

Consider the sequence of natural numbers and the sequence of positive even numbers:

1,2,3,4,5,...,  2,4,6,8,10,....



1.2 Natural density

Although we are trained as mathematicians to think of these sets as having the
same size in the sense of cardinality, our natural inclination is to think of the second
sequence as “half as dense” as the first. Where does this intuition come from? First,
we have access to the initial terms of each sequence, and can compare the number
of terms up to some bound x. Then we extrapolate, using our imaginations to guess
what would happen when z is large. We seek to capture this notion of “density” in

the following definition.

Definition 1.1. Let . denote a subset of the natural numbers and for x > 1 let
S (x) = . N[1,z] be the set consisting of the elements of . not exceeding x. We

define the natural density of ., d ., to be the limit

d.7 = lm XL

T—00 €T

if such a limit exists. In any case the lim sup and liminf exist, and these are respec-

tively called the upper and lower natural densities, with the corresponding notations

d.¥ and d.7.

Thus if we let N be the set of natural numbers, it is easy to see that AN = dN = 1
so that dN = 1 and likewise defining & to be the set of even numbers, d& = d& = %
sod& = %, as we had anticipated.

It may be the case that a set does not have a natural density. For instance, the

following ad hoc construction produces such a set. Put
& ={1,4,5,6,7,16,17,... },

where the numbers in the intervals [27,2""!) are included if n is even, and excluded

3



1.2 Natural density

if n is odd. Calling numbers in the interval [2",2"1) the n-block, we see that since
each n-block contains 2" elements, we find that counting the members of . up to

the 2m-block gives the bound

o . |(5/(22m+1 . 1)| ) (4m+1 o 1)/3 2
472 oy T e

while counting up to the 2m + 1-block gives

. |y(22m+2 _ 1)| ) (4m+1 _ 1)/3 1
A7 < I T A @ 3

Since d.¥ # d.¥, d.# does not exist in this case.

On the other hand, many sequences of numbers which are of interest to number
theorists do have a density. Some of these sequences have the general tendency of
the terms spreading out as we look at increasingly larger terms, in which case their
densities are zero. In this class we find such examples as the sequence of square
numbers, that of the prime numbers, and of the set of numbers that are the product
of two distinct primes. To see this we first note in general that if we know for a set
& that the number of its members not greater than z, |.(z)|, grows as O(x - f(x))
for some function f(z) = o(z), then by the definition of natural density the set will
have natural density zero. Among the examples mentioned, the first set is clearly
O(v/x) = O(z - 27/?), and the second set is O(z - 1/logz) by the Prime Number
Theorem. To estimate the third set, we find an upper bound for the quantity of

numbers pg < = where p and ¢ are prime and p < ¢. Then p < /z, and there are
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m(x/p) choices possible for ¢. Thus the number of pg < z is

p<VzT p<\zT p<VzT

From the foregoing discussion, it becomes apparent that sets with non-trivial
(non-zero) density are in some sense special, and we may wonder which sets have this
property. Certainly in analogy with the example of the even numbers, we have that
any set of multiples has non-trivial density. Rather than proving this directly, we first
note that a set of multiples is a special case of a set which is periodic, in the sense
that if we listed the members of such a set along the number line and partitioned the
natural numbers into intervals [1,n], [n 4+ 1,2n], ..., each of length n for some n € N,
we would observe the same spacing between numbers in each interval. In other words,

the set is some union of congruence classes modulo n.

Definition 1.2. We say that a set . is periodic if it can be written as a union of

equivalence classes a; mod n for some n € N and a; € [1,n],
k
S = U(ai + nNp).

i=1

Then we say that . has period n. We call a set eventually periodic if it can be

written as a union of a finite set and a set which is the translate of a periodic set.
We first prove that any periodic set has a density.

Lemma 1.3. If .7 is periodic with period n, then

7 ()]

n

dv =
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Proof. Since .¥ is periodic, we may write it as

S = U(a—l—nNo)

acA

for some set of natural numbers A C [1,n]. Then

d.5 = 1im 20

T—00 €T

— lim | > acala+nNo)(z)]
iy 2aea (5 0()

T—00 T

_ 14

-7 (n)]

n

Y

proving the Lemma.

Noting that any set of multiples is a periodic set, we see that such a set always has

a density. Moreover, any finite union of multiple sets is a periodic set, so these also

have densities. We now go a step further. Since a density is determined by taking

a limit out to infinity, we might hope that any irregularities at the beginning of a

sequence would “wash out,” so that eventually periodic sets behave in the same way

as periodic ones in the limit. We will prove this in the next proposition.

Proposition 1.4. Let .’ be a finite set, 7 a periodic set with period n, and t € Ny,

so that ¥ = /" U (t+ 7) is eventually periodic. Then

7 )|

n

dvs =

(=}
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Proof. Let m = max(." U {t}) so that .7 N (m, 00) is periodic with period n. Then

4.7 = tim 2O O]
_ i ZOIFI7 00 )
o )| =17 N = m, ]| +] 7 (@)
T—00 T
o 1T@I+00)
T—00 €T
RELD!

n

by Lemma 1.3. O]

So now we know how to solve the density problem for a fairly large class of sets.
Are these the only sets with nontrivial density? Interestingly, there are sets having

nontrivial density that are not eventually periodic.

Ezxample 1.5. Tt is easy to show that the set of squarefree numbers is not eventually
periodic. For suppose it were. Then it would contain the set a + nN for some
a,n, and in particular the number a + a(n + 2)n = a(n + 1)* would be squarefree,

a contradiction. It is known that the density of the set of squarefree numbers is

4(12) —. With this additional information it is immediate that the set of squarefree

numbers is not eventually periodic. Indeed, we observe that any eventually periodic

set must have a rational number as its density.

Another issue which will arise is the question of infinite additivity. That is, is it
true that a density for a set S can be determined by first partitioning it into infinitely
many subsets S; and determining the densities of S; for each i, and then summing

these densities? The following examples will answer this question in the negative.



1.3 The densities of abundant, perfect, and deficient numbers

Example 1.6. Consider the set of natural numbers N. If we partition this set into

singleton sets S,, = {n} for n = 1,2, ..., then it is clear that d S,, = 0 for each n, but

dG{n}:dN:17A0:§:dsn.
n=1 n=1

Thus we see that densities are not infinitely additive.

Ezxample 1.7. We return to the example of the set of squarefree numbers. Recall that
the density of the primes and the density of squarefree numbers having two prime
factors are each zero. It can be shown by induction that the density of squarefree
numbers having k primes is zero for any k. If we denote this set by ., we conclude

that
7T2 ad
dy:d(|_|5ﬂk) =T 0= d,
k=1

so that in this case, as well, densities are not infinitely additive.

1.3 The densities of abundant, perfect, and defi-
cient numbers

Denote the sets of deficient, perfect, and abundant numbers by 2, &, and &, respec-
tively. We will often be considering the set of non-deficient numbers, so we also write
o = 9P° = P U.o/. Harold Davenport [5], basing his work on Isaac Schoenberg’s
[31], proved that each of these densities exists and that d & = 0. Note that the com-
plement of an eventually periodic set is eventually periodic. As we will subsequently
see that 7’ is not eventually periodic, neither is 2. Also, since limits are finitely

additive, we have d(Z U &) =d & and dZ =1 —d «/. This shows that we need
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only determine one of d Z or d &/ to find the other, so in particular we may focus our
attention on the natural density of abundant numbers. However, there is no known
closed form expression for d 7. In 1932, generalizing a method of Issai Schur, Felix

Behrend [3] showed that for all n

L] .47,
n

Thus, taking for granted Davenport’s result on the existence of the density, there are
more deficient numbers in density than there are abundant numbers. In the following
year (in fact in the same year as the Davenport density result), Behrend [4] showed

for his doctoral dissertation that for large n

0.241 < M < 0.314,
n

so that there are at least twice as many deficients as abundants. These bounds
were later improved by Hans Salié [30] (0.246 < d .o/) Charles Wall, et al., [35, 36]
(0.2441 < d &/ < 0.2909, note that the lower bound is worse than Sali¢’s!) and finally

by Marc Deléglise [8] who found the current bounds

0.2474 < d &/ < 0.2480,

giving d &/ = 0.247 ... so that the density of abundant numbers is slightly less than
1/4.
At this point a number of questions naturally arise. Noting the painfully slow

progress made until now in tightening the bounds for d &7, we may wonder how much
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these results can be significantly improved. For instance, can the next digit be found?
If the bounds cannot be significantly improved, why not? Finally, can the study of
o7 be generalized to a larger class of sets?” In the remainder of this work we will begin
to answer such questions by continuing where Deléglise’s paper left off and study
improvements in the calculation of the density of abundant numbers as well as other

related sets.

1.4 Outline of work

We will begin our study by returning to the original work of Behrend. With the
Erdés—Wintner Theorem at our disposal, we will be able to recast his work in terms
of densities. This will lead us to the method used by Deléglise to bounding the density
of abundant numbers. Deléglise took the upper bound method used by Behrend and
wrote a program that can calculate both upper and lower bounds for the density of
abundant numbers.

Our first contribution will be to study the computational complexity of the pro-
gram used by Deléglise. Here a special role is played by the numbers n < z with
prime factors of n not exceeding y, and so the counting function of these numbers,
U(z,y), makes an appearance. As a consequence, we have y and z as parameters for
the Deléglise program. By studying the running time 7'(z,y) of the program, we find

that

T(z,y) = O((log 2)*¥(2,y)).

The function ¥(z,y) has been extensively studied, and it has been found that,

taking y = z'/*, the behavior of W(z, z/*) is governed by u. Writing the difference

10



1.4 Outline of work

between the upper and lower bounds of the Deléglise program as F(z,y), we use
results on W(z, z'/*) to prove the following.

loglo
Theorem 1.8. With parameters y, z chosen to be z = yloglgoglgozy so that

log log y
U=——>=>"—
log log log y
we have

1
E(Zay) < =

uu

This means that the Deléglise program can compute the density of abundant
numbers to any desired precision. Combining the results for T'(z,y) and E(z,y), we
conclude that the running time of the program grows at worst double-exponentially

with the number of digits desired in the density:

Corollary 1.9. Let t be the time that the Deléglise algorithm takes to determine the

density d <, to within 107%. Then we have that

where ¢ is an absolute constant.

Next, we will detail a number of improvements that can be made to the Deléglise
algorithm in order to close the gap between the upper and lower bounds. The lower
bound improvements involve focusing on either primes smaller or larger than y, and
are thus called the small primes and large primes methods, respectively. Many of the
upper bound improvements involve refining a method of Behrend to bound density

using moments of functions related to o(n)/n. A further improvement is made by

11
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using an asymptotic result of Paul Erdés with explicit constants. By combining all

such improvements, we tighten the known bounds to
0.2476171 < d & < 0.2476475,

and thus determine the next decimal digit for the density of abundant numbers; we
now know that d .o/ = 0.2476. . ..

Returning our attention to Behrend’s dissertation, we develop the seed of his
lower bound idea. Behrend used a finite subset of primitive nondeficient numbers
(pnd’s) to determine the density of a subset of abundant numbers. A primitive
nondeficient number is a nondeficient number that does not have any nondeficient
proper divisors. We also consider the generalized version of these numbers, called a-
primitive nondeficient (a-pnd), which are numbers a that have o(a)/a > « but proper
divisors d with o(d)/d < a. By considering the set of all pnd’s P = {ay, as, ... }, which
can be used to generate all nondeficient numbers, we show how these can be used to
determine the density of the set of the abundant numbers themselves. This is done by
first discovering a way of organizing the nondeficient numbers. We are then naturally

led to a new infinite series expression for the density of abundant numbers.

Theorem 1.10. The density of abundant numbers can be expressed as the infinite

sum

. 90<Cv;) 1
do = %—C -

where ¢; = Ly /a;.

Here L; is the lem of the first £ prime powers ordered in a specific manner. This

expression allows us to calculate bounds for the density of abundants. The computa-

12
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tional complexity of this new method is examined. All of these results generalize to
the a-pnd case.

We conclude with a demonstration of the utility of the new approach to a-pnd’s.
Some results on a-pnd’s are proven, culminating in a new proof of the result of Shapiro
that there are infinitely many a-pnd’s n with k distinct prime factors if and only if

a can be expressed as

O'(CL)'L Wb =
. o) (a,b) =1, b>1,

13



Chapter 2

Behrend’s thesis

In this chapter, we will introduce the work of Behrend [4], who published the first
bounds on the upper and lower density of abundant numbers. In order to simplify
our discussion, we will first prove the existence of the density of abundant numbers
using the Erdés-Wintner theorem [16]. Next we will describe Behrend’s method
as explained in general form in Deléglise [8]. This will lay the foundation for our
discussion of subsequent chapters when we study the Deléglise algorithm and make

improvements in the algorithm.

2.1 Preliminaries

In this section, we establish the basic notation and concepts that will be used in the
remainder of this document.

We will always use n and m to mean natural numbers, and use p and ¢ for prime
numbers. We denote the product of the primes p < y by II(y), with II(y) = 1 when
y < 2. Thus I1(2) = 2, II(x) = 6, and II(5) = 30. We let P(n) and p(n) denote

14



2.1 Preliminaries

respectively the largest and smallest prime dividing n when n > 1, and P(1) =

p(1) =1.

Let n have the canonical prime decomposition

k
.
n=]1r
i=1

namely with p; primes and p; # p; when 7 # j. We use the notation m||n to indicate

that m is a unitary divisor of n. In other words, m is a divisor of n such that

€i

(m,n/m) = 1. In particular 1||n for all n and p;

n for each 7, 1 <1 < k.

Proposition 2.1. Let f be a multiplicative function and f(p*) > f(p'~!) on primes
p when i > 1. If m,n are natural numbers, then f(mn) > f(n). If the inequality on
prime powers is strict, namely f(p') > f(p"~') when i > 1, we have f(mn) = f(n)

only in the case m = 1.

Proof. The result is true when m = 1. If m > 1, let p|[mn. Then p¢||n where
0 <e <e Thus f(p°) > f(p) for each unitary prime power divisor of mn. Since f
is multiplicative, f(1) = 1, and with the condition f(p‘) > f(p"~!) we have for each

i > 1 that f(p’) > 1. Then multiplying together the inequalities yields

fmn) = T £ > I @) = f(n).

pellmn ¢ ||n

If we have f(p') > f(p'~!), repeating the argument with this condition results in the

strict inequality. O]

Ezxample 2.2. We denote by o(n) the sum of the positive divisors of n. Thus (1) = 1,
o(p)=p+1,and 0(6) =1+ 2+ 3+ 6 = 12. We further define h(n) = o(n)/n. It is

15



2.2 The existence of the density of a-abundants

immediate that

h(n) =Y é. (2.1)

Since both o(n) and 1/n are multiplicative functions, their product h(n) is also mul-
tiplicative. We also note that h(p*) = h(p*~') +1/p’. Since h satisfies the hypotheses
of the previous proposition, we have that proper multiples of a natural number n have
values of h strictly larger than h(n).

In fact, from (2.1) it is easy to see that h(mn) > h(n) with equality only when
m = 1, since the terms of the sum for h(n) is a subset of the terms of the sum for
h(mn), and is a proper subset unless m = 1. We will be making essential use of this

property of h in what follows.
The following example should be compared with the example above.

Ezample 2.3. We denote by ¢(n) the Euler -function, which is the number of m €
[1,n] which are relatively prime to n. Noting that ¢(n) is multiplicative, we have
that the quotient n/y(n) is multiplicative. In contrast to the previous example,
however, we have p'/p(p') = 1+ 1/(p — 1) for all ¢ > 1. Thus we have only that

n/p(n) < mn/p(mn) when m > 1.

2.2 The existence of the density of a-abundants

In 1928, Schoenberg [31] proved for each o € [0, 1] the existence of the density of
numbers n such that p(n)/n > a. His proof is technical and involves the study
of the mean values of the powers of ¢(n)/n, the so-called moments of ¢(n)/n. In
1933, Davenport [5] adapted this proof to work also for h(n) = o(n)/n. Incidentally,

Davenport reports in the same article that each of Behrend and Sarvadaman Chowla

16



2.2 The existence of the density of a-abundants

independently proved the same result. In order to state the theorem, we will make

the following definitions.

Definition 2.4. Let 2, &, and <, denote the sets of numbers n such that h(n) <

a, h(n) = a, and h(n) > «, respectively. In addition, we define
2 = 9,U P, and A=y U P,

Then we may state the theorem of Davenport as follows.

Theorem 2.5 (Davenport, et al., 1933). For each o, d @7, exists. Considered as a

function in o, d &7, is continuous.

In 1939 a much more general result was proven by Erdés and Wintner [16]. The
theorem is stated in terms of a limiting distribution function for an additive arith-
metic function. We first define a distribution function (d.f.) to be a non-decreasing
function D: R — [0, 1] which is right-continuous and satisfies lim,_. ., D(«) = 0,
lim, .., D(a) = 1. A particularly simple class of distribution functions are those that
are step functions. Such a d.f. is called purely discrete. These d.f.’s are necessarily
not continuous. A simple example of a continuous distribution function is a function
that can be defined with a Lebesgue-integrable function f > 0 such that ||f]; = 1,

that is, having L' norm 1, by

D(a) = /_ "t

Such a d.f. is called absolutely continuous. If a continuous distribution function D

17



2.2 The existence of the density of a-abundants

/S dD(a) = 1

where S C R has zero Lebesgue measure, we say that D is purely singular. This type

has

of d.f. is interesting in view of the Radon-Nikodym Theorem which implies that any
continuous d.f. is a linear combination of an absolutely continuous d.f. and a purely
singular one. If a distribution function is either purely discrete, or continuous and
purely singular, or absolutely continuous, we say that the d.f. is of pure type.

We next define another function which will turn out to be a distribution function,

based on a real-valued arithmetic function f. For each N > 1 we define the function
1
Dy(a) = Dy s(a) = l{n < N: f(n) < a}|

to be a distribution function for f. Note that this is indeed a distribution function,
and is in fact an example of one that is purely discrete. A sequence {Fy}%_; of
distribution functions is said to converge weakly to a distribution function F' if

lim Fy(a) = F(a)

N—oo

at every point o at which F' is continuous. If {Dy}%_; is a sequence of distribution
functions for an arithmetic function f that converges weakly to a distribution function
D, we say that f has a limiting distribution function D (or simply has a distribution
function D, or has a limit law with d.f. D). Now we may state the Erdés—Wintner

theorem.

Theorem 2.6 (Erdés, Wintner). Let f be a real additive function. For f to have a

18



2.2 The existence of the density of a-abundants

limiting distribution function, it is necessary and sufficient that the three series

Z 1 Z f(p) Z f*(p)
p’ p’ p
|f(p)|>1 [f(p)|<1 [f(p)|<1

converge. The limiting distribution is of pure type. It is continuous if and only if the

series

Zl

f(p)#0 p

diverges.

The Erdos—Wintner Theorem provides the principal tool that we can use to prove
the existence of the densities of a large class of sets which includes the set of abundant
numbers.

In our first application of Erdés—Wintner, we will prove the Davenport result
that for any «, the density of the set <7/ of numbers n with o(n)/n > « exists and
varies continuously with «, by showing that the d.f. for h(n) = o(n)/n exists and
is continuous. Note that as h is multiplicative, logh is additive. Thus the Erdds—

Wintner theorem will give a result about the distribution function
.1
D(log o) = ]\}lm N\{n < N :logh(n) <loga}|

for a > 0. Note the reversal in the direction of the inequality compared to the sets as
stated in the Davenport theorem. In fact, D(loga) = d Z., for a > 0. To prove the
existence of these densities, we need only check that log h satisfies the conditions in

the Erdés—Wintner theorem. We do this by noting that since log h(p) = log(1+1/p) <
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2.2 The existence of the density of a-abundants

1/p < 1, the three sums in the statement of the theorem are bounded above by

1 log h 1 (log h(p
Z 520’ Z ng(p) < E’ Z og <Z .t

|log h(p)|>1 |log h(p)|<1 P |log h(p)|<1

so each of these sums converges. This proves that d &/, exists for a > 0. Of course,
we have trivially that d 2, = 0 for a < 0, so d &, exists for all a. Next, by finite
additivity of densities, the density of the complement of &/, namely <,, exists for
all a.

We can also prove that the distribution function D(log«) is continuous. We first

note that log h(p) # 0 for all p. Then

> Z-

log h(p 750

which diverges by a theorem of Euler [27, p. 7], so d 2!, = D(log «) is continuous for
a > 0. Since d Z), = 0 for o < 0, we can again extend continuity of d Z,, to all a.

We now use this result to show that d &, = 0. First we note that Z, = 2!\ Z,.
Now for € > 0 we have that

d(Z2.\ Z.) < lim d(Z,\Z.,_.) = lim (dZ,—dZ,_,) =

e—0t e—0t

We thus conclude that the density of any set &, = 7/, \ %, is 0, and also that each
set 9, and <7, has a density. Returning our attention to the case a = 2, we conclude
that 9, &, and o/ each have densities, and additionally that d & = 0.

Finally, we make note of another property of the distribution function d &, that

for > 1, d &), is strictly increasing. Let 1 < a; < ay. By finite additivity of the
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2.2 The existence of the density of a-abundants

density, it suffices to find a set of numbers nm with «; < h(nm) < ay having nonzero
density.

We first identify a number n such that
a; < h(n) <h(n)(1+e€) < ay (2.2)

for some € > 0, and then show that there exists a set of numbers m such that

1 < h(m) < 1 + ¢ with nonzero density d. Since
h(n) < h(nm) < h(n)h(m),
we have the set inclusion
S ={m: h(nm) € (h(n), h(n)(1+€)]} 2 {m : h(n)h(m) € (h(n), h(n)(1+€)l} = 21,

for any € > 0. We let d = d 2], .. Then the density of the set n.” will be bounded
below by d/n.

To show that an n satisfying (2.2) exists, we will again use Euler’s result that
>,
P

diverges, where the sum is over all primes p. Then we see that

(-

p

diverges by taking the logarithm and using the bound cx <log(1 + z) for 0 <z < 2
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2.3 Behrend’s thesis

and ¢ < log(1+1/2)/2. This bound can be seen by comparing the graphs of log(1+x)
and cz. Since for each prime p we have h(p) = 1+ 1/p, by the multiplicativity of h

we can find some finite product of primes n = IIp such that

or < ([ ) :Hh(p):H<l+%) <o

This will be our desired n.

We will now determine a set of appropriate m. Fix an € > 0 satisfying
B(n)(L+ ) < as.

Now we must establish that d Z;,. > 0. We will use a theorem of Erdés [13].

Theorem 2.7. Ase — 0T,

—
dZic=(1+ 0(1>)10g7’

where v is the Fuler-Mascheroni constant.

This establishes our claim.

2.3 Behrend’s thesis

The doctoral dissertation of Felix Behrend, published as [4], describes two methods of
bounding the density of abundant numbers. For the lower bound, Behrend identifies
a set A of 22 nondeficient numbers, from which he calculates the density d .Z(A) of

the multiples of members of A. Recall that & = o, o/’ = 47, for the function h.
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2.3 Behrend’s thesis

Since the union of these multiple sets is a subset of &7/, we have the lower bound
d.#(A) <d«'. Since we have shown that d &’ = d o7, we have a lower bound for
d &7, as desired. We will return to this method in more detail later.

Behrend’s upper bound method uses two main ideas. One idea is to partition the
set of non-deficient numbers according to their smallest prime factors. In Behrend’s
original paper, the small primes were limited to those up to 7, but Deléglise [8] shows
how this can be generalized to primes < y for any y. In addition, since at the time
the existence of the density was not known, Behrend was confined to work with the
upper and lower densities, rather than the density itself, in his argument. We will
follow Deléglise and make use of the existence of the density as was proven in the
previous section. We will also need the existence of the densities of certain subsets of

/' that we will define below.

Definition 2.8. Suppose we factor a number n = uv so that the prime factors of
u are at most y and the prime factors of v are greater than y. We will call u the
y-smooth part of n. In addition, we call a number n y-smooth if every prime factor p

of n is less than or equal to y, namely if n is its own y-smooth part.

Denote by 7" the set of non-deficient numbers that have y-smooth part n. Thus

! n
o' = || 4,
P(n)<y
where the disjoint union is over all y-smooth numbers n, and P(n) is the largest prime
dividing n. We first ask whether each </ has a density. If n is abundant, this is easy
since @ is then the set of multiples mn of n with (m,II(y)) = 1, which is a periodic

set, so by Lemma 1.3, @/ has a density.
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2.3 Behrend’s thesis

In the case that n is deficient, we do not have a periodic set, so we use the Erdos—

Wintner theorem with the following arithmetic function.

Definition 2.9. Let h, be the multiplicative function defined on prime powers p° as

where h(n) = o(n)/n. We also define the sets

Ao = {m : hy(m) > a}

and

) ={m € A o : hy(m) > a,y-smooth part of m is n}.

Note that @7, is a generalization of the set &/ since & = &, ;). To see this,

we take mn € &/, where m contains only primes greater than y. Since (m,n) =1,
we have
2
h(mn) = h(m)h(n) > 2 <= h(m) > —

h(n)’

With these definitions, it is clear that the Erdos—Wintner theorem applies in our
situation. The distribution function for the arithmetic function h, exists since it
exists for the related function h, and h,(p) # h(p) on only finitely many primes,
so it does not affect the convergence properties of the three series to be checked in
the Erdés-Wintner theorem. We conclude that d <7, exists for o, and in particular
d )" exists.

Next we would like to express the density of the set of abundant numbers o/ in
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2.3 Behrend’s thesis

terms of the densities of its subsets @". As we have seen, densities are not infinitely
additive, so it is not immediately clear that summing the densities of </ over the
infinitely many y-smooth numbers n will give us the density of the union of the 7.
Nevertheless, we will be able to prove that this is the case. First we will need a

lemma.
Lemma 2.10. The sum of reciprocals of the y-smooth numbers n is
-1
PRI
P<y

Proof. Define e, = |logx/logp| so that e, is the largest integer exponent such that

p» < x. Then
1 1

Then taking limits as x — oo, we have our result. [
In view of the foregoing, we will introduce the notation
1\ _ »(l(y))
=T (1 1) - 2010
e I(y)
We can now prove the following proposition.

Proposition 2.11. Let o be the set of abundant numbers and let <7 be the set of

nondeficient numbers with y-smooth part n. Then

) day

P(n)<y
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2.3 Behrend’s thesis

where the sum is over all y-smooth numbers n.

Proof. Recall from the discussion at the end of Section 2.2 that d @/’ = d.«/. We
will thus prove the statement using the set &7’ of nondeficient numbers. We split the

disjoint union according to whether n < z or n > 2z so

/ n n

s=l Ue|ul U
n<z n>z
P(n)<y P(n)<y

Using that &7’ and each 7" have densities, the union U, p()<,7," also has a density

since its complement in .7’ has a density. Thus

do'= > day+d| || 4

n<z n>z

P(n)<y P(n)<y

We must show that the final term goes to zero as z — oo. Since & C nN,

|7, ()| < [nN(z)| <

S8

By the subadditivity of lim sup,

(]

al o]y as
P?Ti)zﬁy P?n>)z§y Pnn

VvV
IAR
<

By the previous lemma we know that the final expression is the tail of a convergent

series. Thus the tail goes to 0 as z — oo and we have proven our result. Il

This proposition allows us to reduce determining the density of ./ to determining
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2.3 Behrend’s thesis

the density of &7 for each y-smooth n.
Finally, we express the sets <7/ in a way that shows explicitly the property that

all of its members are multiples of n.

Definition 2.12. Let .47, , denote the set of numbers m such that (m,II(y)) = 1 and

h(m) > a.

Then 7", is related to &, o by

T,y = 1y
and their densities are related by
" da,,
da, = ny’ , (2.3)

With Equation (2.3) and the relationship between 7", and </, Proposition 2.11 can

Ko
be written

d 2 /nm
dos = Y ane
n

P(n)<y
Also note that this result does not rely on the bound h(n) > 2 in an essential way.

Thus we have in fact proved for any « that

d%a n
do, = Z —Tya/hn) (2.4)
n

P(n)<y

We now move on to the second idea of Behrend, a primitive form of which he
credits to Schur in [3]. Behrend was able to find upper bounds for densities of <7,

using the moments of A, which we define as follows.
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2.3 Behrend’s thesis

Definition 2.13. For an arithmetic function f, we define the mean of f to be

M(f) = tim = (),

n<x

and the rth moment of f to be

M, (f) = lim % > (),

n<x
if these limits exist.

Note that the rth moment of f is simply the mean of f", so any result on means
holds equally well for moments.

Next we will use the following proposition.

Proposition 2.14. Let f be an arithmetic function such that for some ag > 0, we
have f(n) > o for all natural numbers n, and for some a > «yp, let A denote the
set of n such that f(n) > «. Suppose that both the mean of f and the density of N

exist. Then
M (f ) — Qp

a —

dy <

Proof. We observe that

M(f) = Tim 37 f(n)

n<x

—gim = [ S fm+ Y )

n<x n<x
f(n)<a f(n)z2a
o1
= lim —(ao([z] = [A(2)]) + o] A (2)])

T—00 I
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2.3 Behrend’s thesis

= (a—ap)d AN + «ap.

Solving for d .4, we arrive at our result. n

We wish to apply this proposition to our sets «;",. Thus, we must prove that the
moments of h, exist. Let u be the Mobius function. For two arithmetic functions f

and g, the Mobius inversion formula [1, p. 32] gives that

fm) =Yg = g =Y f@u(3).

din din

and we say that g is the Mobius inverse of f. Writing

Wn) =Y by (%)

dln

so that A’ is the Mobius inverse of hy,, we have

T : 1 I8
M) = Tim > byn)

n<x
- 233w
n<z dn

where
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2.3 Behrend’s thesis

We will show that

as £ — o0 so that

M(hy)=>" hlc(ld),

d=1

and we will show that this last series converges.

First we note that A’ is positive. By definition we have
R (p°) = hy(p°) — iy (p°™)

and hy,(p®) > hy(pt) > 1, so that k' is non-negative on prime powers p¢ e > 1.

Thus, A’ is always non-negative. Using this, we can bound |E(z)| by

0<—FE(x) < Zh’(n) < H (L+ K (p)+ 1 (p*) + -+ 1 (p™)) = H hy, (p°),

n<w p<w p<z

where as before e, = |logz/log p] is the largest number so that p® < x.

Next we estimate hy(p®). We have

1< B () < (1 + p%l) —1+0, <119) (2.5)

where the constant implied by the big-O depends only on r uniformly over p and e,,.

This leads us to the product

[T - oo 3w (10, (1)) 2o (0. ($2)).

where we have used the bound log(1 + x) < z for z > —1. Finally, using Mertens’
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2.3 Behrend’s thesis

second theorem (see, for instance, Theorem 427, [22]),

1
Z — =loglogz + O(1)
p<z p
for x > 2, we conclude that
"W (n) < (log ) = o()

n<z

as r — oo where ¢, is a constant depending only on r.

We now show that

= h(n
3 M)

n=1

converges. We write

IN
g
=
S

h'(n) W(p) | M) b (p°)
ZTSH(l—FT—Fp—z-F“'—FpT)

n<x p<x

which on taking limits gives us

= W(n = W (pt
ZEQZHG+;%$>

n=1

We next check that the product converges. We use estimate (2.5) so that

hWQZ%W%WWWU:@(1)7

P’ P’
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2.3 Behrend’s thesis

and so

i h’fln) _ JE&H (1 + O, (%)) = exp (Or (Z %)) = 0,(1).

n=1
We have proven the following result.

Proposition 2.15. The moments of h, exist and are given by the product over primes

M, (h,) H(HihH ~Ilr” )>.

In view of the above results, we arrive at the following result of Behrend [4].

Proposition 2.16. For each integer r > 1, and o > 1, we have

M

d e < Fly)—"

Proof. Since h is multiplicative and h(p®) > 1 for all prime powers p®, h(n) > 1 for
all n. Then by the definition of h,, h,(n) > 1. Now we use Proposition 2.14 taking
the function hy, for f and ap = 1. This gives us an upper bound for the density of
the set

Ay = {m:hy(m) > 1}.

It remains to show that d /¢, = F(y)d 47, ,. Since

A= || .

P(n)<y
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2.3 Behrend’s thesis

we parrot the proof of Proposition 2.11. We have

d| || n#e| < > dnda< > %

n>z n>z n>z
P(n)<y P(n)<y P(n)<y

and since the limit of the right side is 0 as z — oo, this gives us

1
dty= > dnd,.= ) ~d 0 =F(y)d

P(n)<y P(n)<y
This establishes our result. ]

We will refer to this result as the Behrend moment method. In the following

chapter we will use the Behrend moment method to determine an upper bound for

d«.
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Chapter 3

The Deléglise program

The tightest bounds on the density of abundant numbers to date are due to Deléglise
in 1998. He shows in [8] that

0.2474 < d &/ < 0.2480,

so that d.o = 0.247 ..., which is an improvement of two digits over the previous
record. As was indicated in the previous chapter, the ideas used in the Deléglise
program were based on the upper bound method used by Behrend. Given such a pro-
gram, some natural questions arise. First, can the program compute arbitrarily many
digits of the density given enough time? Assuming that the answer to this question is
in the affirmative, it would be expected that with the improved computational speed
of modern computers we would continue to see improvements on the bounds. How-
ever, the work up to Salié’s in 1955 was all done by hand, then by Wall’s computer
in 1972, then finally by Deléglise’s computer in 1998. Comparing this chronology to

the size of the corresponding improvements, we get the sense that progress has not
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3.1 The Behrend-Deléglise method

come rapidly. Could it be that existing techniques are inherently slow? In this chap-
ter, we will investigate the answer to these two questions by studying the asymptotic

complexity of the Deléglise program.

3.1 The Behrend-Deléglise method

Deléglise uses as his starting point the infinite sum expression for the density of .27,
(2.4),
d ya/h(n)
doy= Y ok

P(n)<y
where the sum is over all y-smooth numbers n. For a lower bound, two approximations
are made. First, since each term of the sum is positive, a lower bound may be found

by truncating the sum. Thus

dof > d Fy.a/n(n)
n n<z n
=

(n)<y

for any choice of z. Second, we observe that whenever n is a-nondeficient, we have
a simple expression for 7, o/nm). Namely, since a/h(n) < 1, any number m has
h(m) > a/h(n). Thus the members of the set 27, o/nn) consists of all numbers m,
(m,II(y)) = 1. Since this set is periodic, we know by Lemma 1.3 that it has density
o(Il(y))/Il(y) = F(y). This allows us to write

ddo > Fly) Y % (3.1)
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3.1 The Behrend-Deléglise method

Note that this lower bound expression can be computed since it consists of a finite
product and a finite sum. We will call this method of determining the lower bound
for d 7, the Behrend-Deléglise lower bound method.

For an upper bound, Deléglise again uses the parameter z to split the infinite sum

into two parts, according to whether n < z or not. Thus

d ., o/nn d ., o/nn
defy= 3 yﬁ/h( ) 4 3 yﬁ/h( ). (3.2)
n<z n>z
P(n)<y P(n)<y

with n being y-smooth. Since the first sum is finite, we may simply bound each of
the terms of the sum from above. This is done by using the Behrend moment method
of Proposition 2.16.

Let fly,a be the minimum value among the function F'(y) and the numbers

Mr(hy) -1

F(y) 1

forr=24=0,1,2,...,12. We have d &, < fly,a and we use this estimate for the
first sum in (3.2).
To bound the second sum in (3.2), we first bound d %7, o /n(n) above by F(y). Then

together with the identity

Foy'= 3 (33

P(n)<y
we have
d o, a/h(n) 1 _ 1
Y, USRS EW Y, —=F | Fly) - il G XD
n>z n>z n<z
P(n)<y P(n)<y P(n)<y
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3.2 The Deléglise program

giving us a bound for the infinite sum that is in terms of a finite sum. Combining the

two estimates, we have the upper bound

A a/h(n 1
dey < %+1—F(y) ) - (3.5)
n<z n<z
P(n)<y P(n)<y

Thus both the upper and lower bounds are reduced to finite calculations that can
be implemented on a computer. Analogously to the lower bound, we will call this
method of determining an upper bound for d 7, the Behrend-Deléglise upper bound

method.

3.2 The Deléglise program

We now describe how Deléglise implemented the foregoing ideas into a program. The
prime array prime for primes in [2, y] and the moments array Lambda for 2'th moments
of hy for i = 0,...,12 are calculated first. In order to keep track of the y-smooth
numbers n, the value of the current y-smooth number n being considered is stored in
a variable n and the array a holds the exponents of the primes of n, so that we have
access to both the value and factorization of n. We also need to keep track of the
value of o(n). To do this, in the array Pk we hold the values of the prime powers for

each prime dividing n, the array Sk holds the values o (pd [k] )

for each prime p < v,
and the array sigma holds the product of the first k entries in the array of Sk, so that
o(n) can be found in the index of the prime P(n). The function init initializes the
first entry of each of these arrays to represent values corresponding to n = 1. Then a

backtracking function back is used to run through all of the y-smooth numbers < z.

Deléglise’s function back is fairly intricate, we will reproduce his original C++ code
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3.2 The Deléglise program

below and give a small example of how it works. Here N=|z]| and K=7(y).

void back(int k, Long n) {
Long nextn;
nextn = n;
while (nextn <= N) {
if(alk]) {

traite(k,nextn); // For computing bounds for density

}

if ((k < K) and (nextn*prime(k+1] <= N)) // Take care of overflow
{

alk+1]1=0;

Pk[k+1] = 1;

Sk[k+1] = 1;

sigma[k+1] = sigmalk];
back(k+1,nextn);
}
alk]++;
nextn = nextn * primel[k];

Pk [k] *= primel[k];

Suppose N = 10 and K = 2, so that we are looking for the 3-smooth numbers
n < 10. We call back(1,1). First, nextn is assigned the value 1. Next we enter the

while loop since nextn = 1 < 10. Currently, a[1] = 0, so we do not enter the first
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3.2 The Deléglise program

if block. However, since k < 2 and nextn - prime[2] = 3 < 10, both conditions of
the second if statement are satisfied so we do enter the second if block. At this
point the second entries of some arrays are initialized, and then back(2,1) is called.

The process repeats, but this time we do not enter the second if block since k
is not less than 2. Instead, we move past this block and increment a[2] so that
a[2] = 1. nextn is set to 1 -3, and Pk[2] is set to 3. This brings us to the end of
the while loop.

Since nextn = 3 < 10, we reenter the while block. This time a[2] # 0, so we
enter the first if block. At this point we have found our first y-smooth number,
stored as nextn = 3. The function traite, which is described in more detail below,
computes the terms of the sums needed to determine the upper and lower bounds for
the density of .o7,. As before, we skip both if blocks. Then nextn is set to 9, and we
return to the beginning of the while block.

We again enter the first if block and treat 9 as another y-smooth number. We
also skip both if blocks and nextn is set to 27. However, this time when we check the
while condition, it fails, so we exit the function call for back(2,1). At this point we
return to the case k = 1 and nextn = 1. We increment a[1] to 1 and set nextn = 2.
We return to the beginning of the while loop. Now 2 is counted among the y-smooths
in the first if block and is treated accordingly. We also enter the second if block,
where we call back(2,2).

Continuing to work through this process, we next find 6 and return from back(2,2).
At the end of the while block we have k = 1 and nextn = 1. A couple more spins
around the while block let us find 4 and 8. Then we return from back(1,1). Note

that the number 1 is not included and so must be treated separately. Thus we have
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found all 3-smooth numbers greater than 1 and not greater than 10.
For a larger example, we provide the sequence of 10-smooth numbers from 2 up

to 100 found by this algorithm. These are:

7, 49, 5, 35, 25, 3, 21, 15, 75, 9, 63, 45, 27, 81, 2, 14,
98, 10, 70, 50, 6, 42, 30, 18, 90, 54, 4, 28, 20, 100, 12, &4,
60, 36, 8, 56, 40, 24, 72, 16, 80, 48, 32, 96, 64.

We now describe the function traite, which is called whenever a y-smooth n < z
is found. This is the only part of Deléglise’s code that distinguishes between calculat-
ing bounds for the density of a-abundant numbers versus abundant numbers. First, it
tests n for a-abundancy. If n is a-nondeficient, the value 1/n is added to the running
total abundsum. Otherwise, the value 1/n is added to the running total defsum. Next,
the function Ak is called. This function computes the 13 upper bounds for d &7, 4 /n(n)
from each of the 13 moments in Lambda using the moment upper bound method of
Proposition 2.16. Only the smallest value fly,a /h(n) @mong these upper bounds is kept
and returned. From the a-deficient value n, the value Ay,a Jh(n) /n is calculated and
added to the running total Adefsum.

After all of the y-smooth n < z have been found, the program terminates after

displaying the value of F'(y)-abundsum for the lower bound of d &7, and the value of
Adefsum + 1 — F(y)(defsum + abundsum),

which is the upper bound for d 7.
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3.3 Asymptotic complexity

We are now in a position to investigate the asymptotic complexity of the Deléglise
program. We will also show that by an appropriate choice of parameters, the difference
between the upper and lower bounds has limit 0 as the parameters are increased. Note
that two parameters are involved, namely y, which bounds the smoothness of the y-
smooth numbers n, and z, which bounds the size of n. In fact, there is a third
parameter «, but this value does not affect the complexity of the program. Thus
we will determine the running time of the program as well as the difference between
upper and lower bounds in terms of y and z. This will allow us to choose optimal
values of y and z and determine how such a choice will affect the running time for

the program to calculate the value of d &, to some given precision.

3.3.1 Running time

We first determine the running time 7'(z, y) of the Deléglise program. The time com-
plexity of the program is estimated by counting the computational steps which con-
tribute to the running time, where the steps are defined to be arithmetical operations
such as addition, multiplication, and division, comparisons, variable assignments, and
function calls. Certain of these operations, namely addition, mutliplication, and di-
vision, are dependent on the number of bits of the numbers that are being operated
upon. In particular, as described in Section 1.1 of [25], we have on k bit numbers
that addition is O(k), while division and multiplication are O(k?). For numbers near
z, k < log z, so the more time consuming operations of multiplication and division
take O((log 2)?) steps.

Program initialization consists of loading the precomputed arrays into memory
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as well as executing the init function. Since the arrays all have length 7(y), and the
operations in the init function do not depend on z or y, initialization takes O(y/logy)
steps. After the program initializes, the function back runs through the y-smooth
numbers n < z. Comparing the cases of when n is abundant and n is deficient, we
see that in either case there is a floating point calculation of 1/n and an addition
to the running total of each of the respective cases. For the case when n is deficient
there is an additional call to the function Ak, so this is the more time consuming case.
However, this function takes time O(1), as it does not depend on the values of z and
Y.

Thus the time complexity of the program is

T(z,y) = O((log 2)*¥(2,y)),

where the function ¥(z,y) is defined to be the number of n < z that are y-smooth.

3.3.2 The error estimate

We let the error in the Deléglise method be the difference between the Deléglise upper
and lower bounds, and denote the error F(z,y). By taking the difference between

(3.5) and (3.1), we determine the error to be

Ay o/n(n) 1 1
E(z,y) = ZyTJrl—F(Z/)Z;—F(Z/) -
n<z n<z n<z
P(n)<y P(n)<y IhD(n))Ey
Ay o /nm) 1 1
— ’ F Z_F -
; T+ P(y) ; = F(y) ; -
P(n)<y P(n)<y 5(7?53,
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3.3 Asymptotic complexity

) Y —+ S ya/"(” (3.6)

n>z n<z
P(n)<y P(n)<y
h(n)<a

We will denote the two terms in the error
1
Ey(zy):=Fly) D, ~ (37)

and

A o n
By(z,y) =y~ (3.8)

n<z
P(n)<y
h(n)<a

It is easy to see that (3.7) goes to zero as z — oo since the infinite sum

Z_

P(n)<y

converges to F(y)~!. However, we are interested in the rate at which this happens,

so we will need results on the number of y-smooth numbers n < z.

3.3.3 The estimate for E;

The estimate for the sum

in the Deléglise error will depend on the relative sizes of y and z. If y is less than

exp((loglog 2)?), we proceed as follows. We will split the sum into two sums, according
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3.3 Asymptotic complexity

to whether or not n is squarefree. We first estimate the sum

S(z,y) — Z |:u(n>|

n
n>z
P(n)<y

Writing u = (log 2)/logy, we have that u > (log 2)/(loglog z)?. We first show that

> bl o (Z%)

n>z Jj>u p<y
P(n)<y

This is because, by the multinomial theorem, the expression

(=)

contains terms 1/m where m is y-smooth, squarefree, and w(m) = j with multiplicity
j!. Here the function w(n) is the number of distinct prime divisors of n. The bound
on the index j > u excludes the numbers m with w(m) < u since if j < u, then ¢/ < 2
som < z.

Next we use Mertens’ theorem [22, Theorems 427, 428] which states that

1
Z— = loglogx + B + o(1),

p<z

where B is the constant

e E (a0

and 7 is the Euler-Mascheroni constant. From this, we deduce that we have the
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3.3 Asymptotic complexity

inequality

1
Z— < cloglogx

p<z
for some absolute constant ¢ > 0. For instance, from [29] we deduce that we can take
¢ = 19.5, valid for all x > 1, or using [10] we see that we can take ¢ = 1.0999 for
x > 109,

We may now bound

Z l (Z 5) < Z (cloglogy)’ (3.9)

|
i>u J: p<y ]>u

Note that in our range where y < exp((loglog 2)?), that is to say logy < (loglog 2)?,
we have

log yloglogy < 2(loglog 2)?loglog log z,

where the right side of the inequality is asymptotically smaller than logz. Since
u = log z/ log y, we conclude that 2cloglogy < u. Now for any u bounded below by

2cloglog y, we have that the ratio of consecutive terms of the sum on the right side

of (3.9) is
(j+1 (cloglogy) ~ cloglogy < cloglogy 1
ﬁ(cloglogy) j+1 ~ 2cloglogy 2
Thus we have
1 . 1 1 1 .
Z = (cloglogy) < —‘(clog log y)wi = 2—|(clog log y)!.
=7 i [u]! [u]!
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3.3 Asymptotic complexity

To bound the factorial, we observe that for n > 1,
logn! > / logtdt =nlogn —n + 1,
1

SO

nl > e (g)" (3.10)

Thus

e u
S(z,y) < <E> (cloglogy)“*.

Since our bounds on y and w imply loglogy < 2logloglogz and logloglogz <

log log u, we may write

"log 1 “
> O < toglog (&) (3.11)

n>z
P(n)<y

for some constant ¢ when y < exp((loglog 2)?).

Now we estimate the remaining terms, namely the terms corresponding to n not
squarefree. We use the observation that a number n can be decomposed uniquely into
a square part and a squarefree part, as follows. Let m? be the largest square divisor
of n. Then writing v = n/m?, n = m?v, we have v is squarefree, for if not, then
a square divisor d* > 1 of v can be found and (md)? is a square divisor of n larger
than m?, a contradiction. Then we estimate separately the sums over n according to

whether m > n'/* or m < n'/%. In the former case,

I D S
P%iy m>z1/4 P(v <y
m>nlt/4
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3.3 Asymptotic complexity

! |
<<m ogy.

When m < n'/*,

g
3| -
IN
*[]
3|~
g
S|

3
<
i
AN

A
=
=
<

=
S

logzl/2
logy

Thus this sum is of greater order than (3.11), and since

(3.11) to estimate

/ u/2
Z Wsl_”)’ < loglog(u/2) (M) < 1

P(n)<y u/2
n>z1/2

We conclude that for y < exp((loglog 2)?),

and so

when y < exp((loglog 2)?).

uw/2’

(3.12)

= u/2, we may use

(3.13)

When y > exp((loglog 2z)?), namely when u < (logz)/(loglog 2)?, we will use

published results on the behavior of the function W¥(z,y), which counts the y-smooth

numbers n < z. This function has been studied extensively; see, for instance, [26, 34,
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3.3 Asymptotic complexity

21]. In particular, we will need an upper bound for ¥(z,y). Since u = (log z)/ log vy,
the ¥ function can be written as ¥(z, z2//*). The work of de Bruijn related the W
function for certain y and z to the Dickman p-function, which is defined for u > 0 as

the unique continuous solution to the differential-difference equation

It was proven by de Bruijn [7] that

1 log1 log 1 2
p(u) = exp ¢ —u | logu +loglogu — 1 — 4 0808 | (loglog u)*
logu log u (log u)?

as u — oo. Later Hildebrand [23] was able to prove the following.

Theorem 3.1 (Hildebrand). Let € > 0. Uniformly under the condition z > 2,

1 < u < (log2)/(loglog 2)*3*¢, we have

W(z, 2Y%) = zp(u) (1 + O, (M)) .

log 2

Combining the two results, we have for z > 2, 1 < u < (log z)/(loglog 2)*/3+<,
that

U(z,y) < zu™™.
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3.3 Asymptotic complexity

Now we are prepared to estimate the sum

Z l
n
n>z

P(n)<y

(3.14)

for the case y > exp((loglog z)?). The strategy will be to split the sum according

to whether n is larger or smaller than the bound zy = (exp exp v/logy)?, since for y-

smooth n < zy the Hildebrand estimate applies, while for y-smooth n > 2, our earlier

estimate (3.13) applies since y = exp((loglog \/z0)?) < exp((loglog zp)?). Thus we

separate the sum

1 1 1
> n > n T ) o
n>z ne(z,z0] n>zo

P(n)<y P(n)<y P(n)<y

For the first sum above, we have

1 0 dU(t,y)
2 E:/Z —

né(z,20]
W(t = 0t
|: ( 7y>:| / ( 7y> dt

P(n)<y

t #2
v 20
_ U(20,9) _W(z,y)+/ vty
20 z . 2
20
§M+/ v(t.y)
20 P t2

0 log y

1 (o)
=~ +1Ogy/ p(v)dv
U’O U

logy

< .
uY

1 e 1
L — + / @dt (Where Uy = %820 and
U z

(3.15)

10gt)
v = ,
logy

For the second sum in (3.15), we use the estimate (3.13) so that, again taking uy =
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3.3 Asymptotic complexity

(log 29)/ log y, we have

ug/2 1/4 °
n>zo n Uo 0/ ZO/
P(n)<y
Since
1 - 1
u0u0/2 (u0/2)u0/2
and
1 lo
= gy
ut uY

for y > e, we now wish to show that

1 < 1
(ug/2)w0/2 v’

or, equivalently, that u < ug/2. This in turn is equivalent to

log((exp exp v/10g y)?)
9

log 2z < = exp y/logy

and finally,

logy > (loglog 2)?,

which is the case we are considering. Thus, we conclude that

1 < 1
USO/Z u’
and that
1 logy logy
- u 1/4
n>z 0

P(n)<y

20

(3.16)

(3.17)

(3.18)



3.3 Asymptotic complexity

We next show that

logy logy
1/4 . u
Z u

This amounts to showing that

1/4
u"<z0/.

We use (3.17) so that

log 2 - exp +v/logy

“= logy logy
which gives
exp VIOE T
" <exp vlogy) ey
< | ——
logy

From the definition of zy we have

1/4 \/
2y =1\/expexp+/logy.

Thus we wish to show that

expl\/@
ogy
) < \/expexp log y.

(exp Viogy

logy

Taking logs, we need that

exp+/logy

1
logy (vlogy—loglogy)<§exp log y.

For this inequality to hold, it suffices to show that

exp+/logy exp+/logy 1
= V1egy < —exp+/logy.
Viogy  logy Y PYT2BPVERY
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3.3 Asymptotic complexity

It is clear that this inequality holds for y > e* ~ 54.6. We conclude that

1 1
Fly) ) S <
P?n>)zéy
for y > exp((loglog 2)?).

Now we compare the two bounds. In the case of the first bound where logy <

(loglog 2)? and u > (log z)/(loglog z)?, we have

log z
1 1 log1 2\ 2(loglog 2)? 1
> > (Uoslos2) TS
logy = (loglog z)? log 2 uu/?

This gives us that

L1 (1 21
logy uu/2 uu/2 _uu'

Thus we see that for sufficiently large z, the second bound is preferable. Thus we will
restrict our consideration to the latter case where y > exp((loglog z)?) and use the

following bound.

Proposition 3.2. Let y > exp((loglog 2)?). Then

1 1
Ei(zy) =Fly) > ~<—,
n>z n u
P(n)<y

where u = (log z)/logy.
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3.3 Asymptotic complexity

3.3.4 The second sum

We now estimate the second sum in (3.6), namely (3.8), which we reproduce here:

A a/h(n
Ey(z,y) = Z el

n
n<z

P(n)<y
h(n)<a

We first estimate fly@. Since fl%a is defined as the minimum value among the mem-
bers of a set of upper bound values, we have a simple upper bound for this function
by taking the minimum value of the members of a subset of the original set of upper
bounds. In particular, we choose the trivial upper bound F'(y) and the first moment
bound. In order to determine the value of u at which we switch from one bound to
the other we will use a parameter w, so that when u < 1 4+ 1/w we use the trivial
bound and when u > 1+ 1/w we use the first moment bound.

We will also need to estimate M;(h,). Recall that M;(h,) has an Euler product,

i) =T (1 N fﬁ hy (1) - ihyw-l)) |

Since hy,(p*) — h,(p"™') = 1/p' when p > y and is 0 when p < y, we have

We upper bound the expression log(1+1/(p* — 1)) using the bound log(1+1z) < x
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3.3 Asymptotic complexity

for x > 0. We wish to bound it below by

1<1 14 ! 1 !
iy 0} = 10 .
p et T

This can be seen by taking exponentials of both sides and comparing the Maclaurin

expansions term-by-term:

A + ! + L + ! +
PP p* o 2pt 6p° ’
while
S R
1— # p2 | pr b
Thus,
1 1
exp [ > = | < Mi(hy) < exp 5 ,
p p*—1
P>y p>y
and we conclude that
1
Mi(h,) —1~
1) ylogy

as y — 0o. We now consider the sum over those n such that a/h(n) € [1,1 + 1/w].
Here, we use the upper bound fly,a < F(y). We will also make use of the following

result of Erdés [15].

Theorem 3.3 (Erdés). Let N(z;a,b) denote the number of n < x such that a <

h(n) < b. Then there is an absolute constant ¢ such that for a > 1 and x > t,

1
N|xa,a+ — <ci.
t logt
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3.3 Asymptotic complexity

We now use the above theorem and partial summation to bound the sum

>

n
n<z

1<a/h(n)<1+1/w

Writing the inequality 1 < a/h(n) <14 1/w as

1\t
P :a(1+—> < h(n) < a,
w+1 w

we have
Z l_l_'_/sz(t;oz—wLH,oz)
n 1 t
n<z
1<a/h(n)<14+1/w
N(t;ao — 2 a)|* “N(t;oa — 2= «
=1+ ( tw“ ) +/ ( tz“’“ )dt
1

1
1 *N(t;a— 2«
=140 +/ ( wtl )dt
log w 1 12

for w > 2. The integral can be estimated by noting that

*N(t;a— %« z z
/ ( wtl )dt:/ o(—t Var—o L /ldt _o(losz
1 t2 1 logw J; t log w

% log w

for w, z > 2. Thus, we have

Fo) Y =

n<z

P(n)<y
1<a/h(n)<14+1/w

(v
log w

for w,y,z > 2.
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3.3 Asymptotic complexity

For the remaining case where a/h(n) > 1+ 1/w, we use the first moment upper

bound, so that

. M (h,) —1 1 1 w
A < Fly)—%Y— = : W)=Y doe 2
yo/nn) < F(y) #n) -1 0 <logy ylogy w) © (y(log y)z)

for w,y > 2. Since

we have that the sum

in this case is

O (Gmere) = =0 (rwniere) = Gy

P(n)<y

for w,y > 2. Thus the second sum has the combined estimate of

0 u N w
logw  ylogy

for u > 1 and w,y > 2. Setting the two terms equal to each other, we see that we

want to choose a value of w so that

ylog z < wlogw.

If we choose w = yu, the right side is of order yulogy = ylog z if y > u. With this
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3.3 Asymptotic complexity

choice of w, we have that our sum is bounded by

3 Ayasnm) _ o (¥
n logy )’

n<z
P(n)<y
h(n)<a

foru > 1,y > 2, and y > u. In fact, if we simply choose w = y we arrive at the
same estimate, so the condition y > u is superfluous. We have proven the following

proposition.

Proposition 3.4. Foru>1 andy > 2,

3 Ayason) _ o (0
n logy )

n<z

P(n)<y
h(n)<a

3.3.5 Asymptotic complexity

We now combine the two error terms. For the first error term we have restricted

ourselves to the case y > exp((loglog z)?) where the bound is

1

u’LL

Collecting the two error terms, we have the error bound

1
o(—+ - )
u*  logy
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3.3 Asymptotic complexity

We now seek a relationship between y and z which minimizes this upper bound.

Equating the terms suggests we take logy = u**!. Taking logs, we have
loglogy = ulogu + log u,
while taking logs a second time we have
logloglogy = logu + O(loglogu).

The quotient of the two expressions gives

loglogy w4t O uloglog u
log log log y log u '

Solving the expression
loglogy  logz
logloglogy  logy

for z, we have

log log y
z = ylogloglogy .

Thus we have the following theorem.

log lo
Theorem 3.5. With parameters y, z chosen to be z = ylogfgogfgogy so that

log log y
U= —"""—
log log log y

we have
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3.3 Asymptotic complexity

This establishes that given the appropriate choice of y and z, the Deléglise program
can calculate the density d .7, to any precision.

The time complexity of the Deléglise program is < (log z)?¥(z, i), which is asymp-
totic to z(log z)%p(u) as u — oo for our range of u. We can use this to determine a
bound on the time it would take to estimate d 7, within 1/10* for any given k. Thus

log log
taking t to be the running time of the program, and z = ys lglosv as in the theorem

above, we have

t < (log2)*¥(z,y)
< 2(log 2)?

uu
2 loglogy
_ IOg Yy log 10g Yy Yy log IOg log Y logloglogy
~ \_logloglogy log log y

log y log log y
=exp|O| ———— ) |.
log log log y

1 1
W‘O(J)’

ut < 10%,

Next we write

so that

and

ulogu = O(k).

Now since we have u = (loglogy)/logloglog y, taking logs we have

log u = logloglog y — loglogloglog vy,
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3.3 Asymptotic complexity

SO
log log y log log log log y
log log log y '

ulogu = loglogy —

Thus ulogu =< loglogy, so
loglogy = O(k).

Then

logy = 9%

and

t < expexp(O(k)).
Thus we have proven the following corollary.

Corollary 3.6. Let t be the time that the Deléglise algorithm takes to determine the

density d 7, to within 107%. Then we have that

ck

t<ef,

where ¢ is an absolute constant.

Note that we have proven only an upper bound for ¢ and not a lower bound. In
order to determine a lower bound, we would need a lower bound estimate of the error
E(z,y), which is an area for further research. However, if the corollary reflects the true
order of magnitude of the time complexity, the double exponential character of the

time bound would explain the slow progress made in the estimation of d &7 = d .o%.

60



Chapter 4

Improvements to the Deléglise

algorithm

As we have shown in the previous chapter, although the program used by Deléglise is
guaranteed to determine the density of abundant numbers to within & decimal places
for any k, the running time may increase double-exponentially in k. In this case it
would quickly become prohibitive to determine successive digits for the density simply
by increasing the values of the parameters y and z. In this chapter, we study the
sources of error contributing to the size of the error function G(z,y) and use various
ideas to reduce the size of the error. In particular we will be able to determine the

next decimal digit for d .o7.

4.1 Some lower bound improvements

Let @7p(w, z,y) denote the set of nondeficient numbers of the form uwv, where u is a

y-smooth number with u € (w, z|, and v is a number relatively prime to II(y). The
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4.1 Some lower bound improvements

Behrend-Deléglise lower bound calculates the density of the subset @7p(1, z,y). One
idea for improving the lower bound is to add to d @p(1, z,y) the density of other
subsets of &/’ that are pairwise disjoint. We will describe several such subsets and

discuss how to calculate their densities.

4.1.1 The small primes method

Consider the set 2.27p(1, z,y) for 2 < y. Each member is clearly nondeficient, in
fact, abundant. If we know the density of /p(1, z,y), it is easy to find the density
of 247p(1, z,y) since we can simply multiply the former by 1/2. The only problem
is that we require the set to be disjoint from «/p(1,z,y). This motivates the con-
sideration of the set 227p(1, z,y) \ “p(1,2,y) = 29p(2/2, z,y). Computationally,
d %/p(2/2, z,y) can be found easily since this value is a subsum of the sum that cal-
culates d @p(1, z,y). Thus, it is only necessary for a program to keep track of two
sums instead of one, and test term-by-term whether or not a y-smooth number is less
than z/2, and add values to the two sums accordingly.

This idea extends to higher powers of 2. Indeed, the set 497 (2/2, z,y) is disjoint
with each of @/p(z,y) and 247 (2/2, z,y). Moreover, note that finding the density
of 497/p(2/2, z,y) requires no extra computations aside from a division by 4 once
d @/p(z/2, z,y) has been found. Continuing in this manner, we have a sequence of
sets S? = 2'.@/p(2/2,z,y) that are pairwise disjoint having known densities. Since

densities are not necessarily infinitely additive, it remains to check that

[e.0] o0 1
;dsfzdsggi —2dS2.
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4.1 Some lower bound improvements

Thus, we must show that

EiL,JS? —0

as k — oo. This can be seen by noting that S; C 2°N, so

s clJoN=2""N.

i>k i>k

Then

This can also be seen by observing that if sets S? have densities and are disjoint,
then the lower densities of their union is at least the sum of their densities. Since the
limit of the sequence on the right as k — oo is 0, this establishes the infinite density
sum expression. Note that the net increase of the new lower bound above the original
lower bound is d S7.

An analogous argument involving odd members of @7y (1, z, y) and powers of 3 can
also be used, giving a smaller but still noticeable improvement in the lower bound.
In this case, we begin with the odd y-smooth nondeficient numbers n € (z/3, z] and
define

S? = 3(a(2/3, 2,y) \ 2N).

Repeating the argument yields

o0

> ) ) 1 3 .
ds?=ds3 —=-d8s3.

1=
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4.1 Some lower bound improvements

In general, for a prime p < y, we construct sets

St =1 (ﬂfﬁ(Z/p,z,y) U qN>

q<p

with density sum having value

b
dsy  —.
So p—

Then for any bound 39 < y, we may sum these densities over the primes p < yy to
get

stg.]%.

<%0

We will call this method of using small primes p to augment the value of the original
density the small primes method.

Using the small primes method for the single prime p = 2, we find for y = 500
and z = 10 that

d.«/ > 0.247460540. . .,

which is an improvement of about 9.16 x 107% over the Deléglise lower bound of
0.247451383 . ... If we also use the small primes method for the next prime p = 3, we
improve this to

do/ >0.247461012. . .,

which improves on the small primes result for p = 2 by about 4.72 x 1077,

4.1.2 The medium primes method

For a subset S of natural numbers, we introduce the notation .#,(S) to denote

the set of all multiples ms of each s € S, where m is a natural number such that
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4.1 Some lower bound improvements

(m,II(y)) = 1. Recall from Section 2.1 the notation p(n) and P(n) for the smallest
and largest prime factors of n, respectively. Consider a y-smooth number n not

greater than z and a number m such that p(m) > y,,, where

- max{P(n),(z+1)/n} ifn> z/y,
Y ifn < z/y.

Note that the numbers mn as defined are exactly the members of the set ., ({n}),

which has density

a.tt,,({n}) = Tn)

n

Lemma 4.1. The sets
My, ({n})

over all y-smooth numbers n not greater than z are disjoint.

Proof. We will show that, given a number mn such that n is y-smooth and not greater
than z, and m has p(m) > y,, we can retrieve the number n, so that mn belongs only
to Ay, ({n}). Write mn = pi1psps ... pr as a product of primes such that p; < p;q
fori=1,2,...,k—1, and n; = p1p>...p;. Thus n must be one of n;, j =0,1,... k.

Let n; be the y-smooth part of mn. First suppose that n; > z. Then since n < z
it must be that n # n; so y, < y and n > z/y. Let i be such that n; < z < n;p;41.
Note that either n = n; or np(m) < n;. But np(m) > z+ 1 > n;, so n = n;. Next
we suppose n; < z. We will show that n cannot be greater than z/y. Suppose to the
contrary. Then y, = max{P(n),(z +1)/n}, so z+1 < ny, < np(m) <n; <z, a

contradiction. Thus n < z/y and so n = n;. O
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4.1 Some lower bound improvements

Now if n is nondeficient, then every member of .#Z,, ({n}) is nondeficient. We will

denote by Ty(z,y) the set

Note that @7p(z,y) C To(z,y), so that we can expect an improvement in our lower

bound for the density of abundant numbers,

do/ >dTy(z,vy).

We will call this the medium primes method.

Using the medium primes method, we find for z = 10!* and y = 500 that

d.o/ > 0.24747574.

This is an improvement of about 2.43 x 10~ over the Deléglise lower bound. Com-
paring the medium primes lower bound to the small primes lower bound, we see that
the medium primes method is an improvement of about 1.47 x 107®. Thus for our
choices of z and y, the medium primes method is preferable.

Unfortunately, the small primes and medium primes methods are incompatible.
For instance, the number nym; with n; = 2* -3 and m; = 5 is considered in the
medium primes method for z = 10",y = 500. However, nim; = 22n, where ny =
242.3.5. This number is considered in the small primes method since z /2 <ny <z
Thus the two methods do not consider disjoint sets of abundant numbers so we may

not combine the two improvements.
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4.1 Some lower bound improvements

4.1.3 The large primes method

Suppose n is y-smooth, n < z, and n is deficient. Then the nondeficient multiples
nm, where (m,I1(y)) = 1, are not accounted for in the Deléglise lower bound density.
We now capture the density of subsets of these nondeficient numbers which involve

particulary simple calculations.

The single large primes method. We first consider y-smooth numbers n not

greater than z, such that

Then n is deficient, but if there is a prime p such that

y<p§5g%a,

then np is nondeficient. We can see this since (n,p) = 1, so we have

blop) = i) = bl (143 ) 2 i (14 27 14)

Since np is nondeficient, any multiple of np is also nondeficient. However, we
wish to use these new numbers in conjunction with the members of @7p(z,y) from
the original Behrend-Deléglise method. In fact, we will show that the numbers are
not members of Ty(z,y) considered in the medium primes method. We must also
ensure that various choices of n and p do not conflict with each other. Thus we

restrict our attention to multiples mnp where (m,II(p — 1)) = 1, namely the sets
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4.1 Some lower bound improvements

Mp—1({np}), where the notation .#, is defined in Subsection 4.1.2. We now establish

the compatibility of all of these sets.

Lemma 4.2. For each y-smooth n not greater than z such that

1
2(1-——) < 2
( y+1)_h(n)<’

and for each prime p such that

the sets
My—1({np})

are pairwise disjoint. In addition, each such set is disjoint from Ty(z,y).

Proof. We first show that if we fix an appropriate n and choose p,q, p < ¢ corre-
sponding to n, then the sets .#,_1({np}) and .#,_1({nq}) are disjoint. But this is
clear since p divides all members of the first set but no members of the second set.

Now we let

L, = My ({np})
PE(y.h(n)/(2-h(n)]

and show that for n,n’, n # n/, the sets L, and L, are disjoint. This is also easy,
since the members of the first set have y-smooth part n, while the members of the
second set have y-smooth part n'.

It remains to show that each L, is disjoint from Ty(z,y). We again compare y-
smooth parts of the members of each set, which are distinguishable since those of L,

are all deficient, while those of Ty(z,y) are all nondeficient. O
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4.1 Some lower bound improvements

By this lemma, we see that we may add the densities of the sets .Z,_1({np}).

These sets are periodic so we immediately have that

Fp—1
d ., 1(npN) = %

We also define their union as

Apy = U U %p—l({np})v

n<z h(n)
Py YSPSETRm

2(1- 47 ) <h(n)<2

so that we have a new density expression

dep = > % yo Hemd (4.1)

p
n<z h(n)
P(n)<y YSPS3-him

2(1— 47 ) <h(n)<2

which may be added to the medium primes lower bound.

To simplify the calculation of the inner sum we use an observation found in

de Bruijn [6].

Lemma 4.3. For 0 < y; < s,

Fip—1) . F(yp)
2 R = F) (4.2)

PE(y1,Y2]

Proof. We proceed by induction on the number of primes in (y;,y2|. For the case
where there are no primes in (yi, 3o, the left-hand sum is empty so is 0, while on

the right side of (4.2) we have F(y2) = F(y1) so the right side is also 0 and we have
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4.1 Some lower bound improvements

equality. Now suppose the equation holds when there are a certain number of primes

n (y1,y2], and let (yo,y3] be an interval containing a single prime p’. Then

Flp—1 Flp—1)  F(y
Z(p ):Z(p) (42)

F F /F
pE(y1,33] PE(y1) pe(y1,92] pF(y1) P F(y1)
:1_F(y2)+ F(y2)
F(y1)  P'F(y)
F 1
F(yl) p
=1 F(y3>
F(yl)7
which proves the claim. -

This lemma allows us to simplify the inner sum in (4.1) to

R e ().
h(n)

Y<P< 5 5(m)

Thus, from (4.1),

d.opy = > % <F(y) —F <2’_1(—Z()n)>) . (4.3)

)
2(1-gr)<h

I/\ I/\N

We will call this the single large primes lower bound method.

To implement this sum we must calculate values of F'(y) for many values of y.
Since F'(y) only changes at prime values of y, we include in the initialization of the
program the calculation of an array of values F'(p) for primes p up to some bound

Pmax- FOT Y > Payx, we use Dusart’s lower bound for F(y) in [10]. For future reference,
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4.1 Some lower bound improvements

we will reproduce both the upper and lower bounds for F'(y) here.

7 0.2 - 0.2
© (1-—=-) < Py < —(1+—-). (4.4)
logy log®y ) v>2973 y>1 logy log”y
Then for each deficient y-smooth n not greater than z, if h(n) > 2(1 —1/(y+ 1)), we

compute the appropriate term in the sum d 7p;.

Using y = 500, z = 10", and ppa = 5 X 107, we find that
d (2, y) +d fpy > 0.24T574T57,

which is an improvement of about 1.23 x 10~* over the Deléglise lower bound of

0.247451383. We also have
dTo(z,y) +do?p; > 0.247599114,

which is a gain of about 2.43 x 1075 over the single large primes method alone, and

about 1.47 x 10~* over the Deléglise lower bound.

Remark 4.4. The idea for the medium primes method of Subsection 4.1.2 can be
extended using the idea of the single large primes method to give an additional im-
provement in the density lower bound estimate. We simply consider when a y-smooth
n, z/y < n < z that is deficient can be augmented by any prime p in the interval
(Yn, y] that makes np nondeficient. Then the multiples mnp such that p(m) > p have
not yet been considered in the single large primes method, since the y-smooth parts
of these new numbers are greater than z, while the y-smooth parts of the numbers

considered so far in the single large primes method are not greater than z. With this
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4.1 Some lower bound improvements

additional contribution to the density, we gain a contribution of about 1.05 x 10~".

However, as this contribution is marginal, we will not pursue the matter any further.

The double large primes method. Further modifications can be made in the
same vein and in addition to the above calculation. The single prime method will not
apply for a deficient y-smooth number n < z and a prime p > y if h(np) is deficient.
Solving the inequality h(np) < 2 for each of h(n) and p, we see that this is the case
when

h(n)

2
h(n) <2 — P} and, equivalently, p > 2——h(n)

Since p > y, we see that the first inequality always holds when h(n) <2 —2/(y+1).
We will call this case I. On the other hand, even if 2 — 2/(y + 1) < h(n) < 2, it may
still be true that p > h(n)/(2 — h(n)). This will be case II.

In either case I or case II, there may be a prime ¢ > p such that npq is abundant.
Then analogously as before we have for a deficient number np that the sum of these

densities can be simplified:

1 3 F(QT‘” _ nip (F@) _F (%)) . (45

"D o)/ @—h(np))]

This density represents the multiples mnpgq where p(m) > q.
We now note that, just as in the case of the small primes method of Subsection
4.1.1, the idea can be repeated for higher powers of p. For instance, if the number npq

defined as above is abundant, then np?q is also abundant, so repeating the previous

72
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argument we have the density sum

1 F(g—1)

. .
" by @—hmp)] 1

These sets are disjoint from the sets involving npq since the numbers differ in their

powers of p. Moreover, we can continue to higher powers of p, giving the density sums

1 F(g—1)
DD p

q€(p,h(np)/(2—h(np))]

for all ¢ > 1. The sum of these densities over ¢ > 1 is a geometric series, so we simply

multiply (4.5) by a factor of p/(p — 1). The sum thus becomes

=5 (0~ F (5507 ) o

It can be verified that this equals the density of the union of the sets involved by
noting that the union of the tail is bounded by a geometric series and thus has limit
ZEro.

We now evaluate and sum over this expression for each prime p > y which is
accompanied by a second prime ¢ > p in the interval

h(np)
< P
e )

where a = y for case I, and a = h(n)/(2 — h(n)) for case II.

Noting that if we allow p to be the largest prime satisfying p < h(np)/(2 —h(np)),
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4.1 Some lower bound improvements

the density expression (4.6) is 0, so we may simply sum over primes

h(np)
a<p< m

By solving the second inequality above for p, we find an upper bound for p independent

of p, namely

2 — h(n) 2 —h( 2 — h(n)
__h(n) 2
= (M h(n))
h(n)

Using this bound on p, we may now determine a lower bound for h(n) in case I. We

h(n) 22<1—L)2,

p+1

find that

and since p > y, this gives us

h()>2(1 ! )2 g A 2
n - =2- .
- y+1 y+1  (y+1)2

We will denote by @ps; and &Zpsr; the set of nondeficient numbers belonging to

case I and II, respectively, so that

,Q/pgj = U U U%q—l({npiQ}>

n<z h(n)<2—-2- =1
P(n)<y Hee)
y<p<g< 2—h(np)
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and

o0
porr 1= U U U%q—l({nsz})'
n<z 2—2_c<h(n)<2 =1
POISY iy ) o)
T—h(n) <P<4< 3 5 (np)

We will in addition define &/py := po; U &porr. Then d apy is the sum of terms

(4.6) over n and p satisfying the conditions of either case I or case II, so that

D M N R )R

n<z y<p<asz
P(n)<y
b2<h(n)§b1
1 1 h(np
> oY A (rw-r ()
n<z a1<p§a2p p
P(n)<y
blgh(n)<2

where a; = h(n)'/ /(2% — h(n)"/?) and b; = 2(1 — 1/(y + 1))°.
At this point another simplification may be made. Each of the inner sums in (4.7)

can be split into two sums,

F(p) 1 h(np)
2 o1 M 2 p—lF(2—h(np))'

a<p<az a<p<az

We now observe that by (4.2), the first sum can be written as

F(p)_ F(p—l) p—l_
“;@ﬁ_a;@ p—1  p = F(a) — F(ay).

Then we have a computationally simpler expression for d o7ps, namely
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dapy= Y %(F(y)—F(%)_ 3 1 F(;(;ﬁp)>>+

-1
n<z y<p<a2 p
P(n)<y
ba<h(n)<bi

(]

% (F(al) — F(az) — Z pi 1F (2 E<Z€?T)Lp))> - (48)

n a1 <p<lag
n

P
bi1<h(n

IN
A

N

Y
<2

N

For computational purposes we may either limit the largest possible prime p to be
bounded by some pp.x, and compute terms only when ay < pyay so that F'(ag) may
be computed, or when as > pna.x We may use explicit upper and lower bounds on
F(z) which may be found, for instance, in [10].

By using the latter approach, we can use a combined expression for d .&7p; +d &/py

by adding Equations (4.3) and (4.8),

1 1 h(np)
dJZ/P1—|-dJZ{p2 = Z - F(y) —F(ag) — Z F ( )
n<z n max{y,a1 }<p<az p= 1 2 - h(np)

P(n)<y
ba<h(n)<2

1 1 h(np)
- X WX () 6

n<z y<p<ai
P(n)<y
b2<h(n)§b1
Finally, we note that
y < aq — h(n) > b,

76



4.1 Some lower bound improvements

so that the second outer sum in (4.9) is in fact empty. Thus we have

1 1 h(np)

d .o/p) +d opy = — | F(y) — F(az) — F

P1 P2 Z 0 () (a2) Z p—1 (2 — h(np)

n<z max{y,a1 }<p<az
P(n)<y
b2<h(n)<2
(4.10)

In practice, we must control the inner sum in (4.10) when the primes p exceed
Pmax, Since as can be much larger than p,,... This can be seen since as > 2aq, and aq
can become about as large as 2z since there can be n such that 2 — h(n) &~ 1/z. This
happens, for instance, when n = 2*, where k is such that 2 < z < 2¥1. For this
choice of n, a; = 2"*' —1 > 2 — 1 s0 ay > 2z — 2. Thus when z is large, say z = 104,
it is impractical to sum over primes in the interval (ai, as]. Moreover, when p is as
large as z, the contribution of the term corresponding to p is smaller than 1/z, so can
be ignored with miniscule cost.

To handle this issue, if p > pmax we bound the terms of the inner sum in (4.10)

by first observing that

Thus

We also use the bound
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1
rler (Y
pe@h? ey
1

1
a

1
b

p€E(a,b] p

Then we have the bound

2 pilF(Qﬁ%QM)

max{al sPmax } <PSG2

SSRY B > S U S

maxya a
ma’x{al 7pmax}<p§a2 p { 1, pmax} 2

We can then use Dusart’s upper bound for the sum over reciprocal primes from [10]

to bound
>
maX{al,Pmax}<P§fl2
For future reference, we will record Dusart’s upper and lower bounds for the sum of

reciprocal primes here:

1 4 1 1 4
— + < ——loglogz—B < + , (4.11
(10 logz  15log® :c) z>1 ; p 608 «>10372 10log* 2z 15log” x ( )

where B is defined by the sum over primes p,

e (s

p
and v is Euler’s constant.

We will call this method of using primes p > y to augment the Deléglise lower
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bound calculation for the density of abundant numbers the large primes method.
Recall that the single prime version of the large primes method with y = 500,

2z = 10", and ppax = 5 x 107 gave us the bound

d .o/ > 0.247574758,

which is an improvement of about 1.23 x 10~* over the Deléglise lower bound of
0.247451383. If we also use the double prime version of the large primes method, we

improve this to

d .o/ > 0.247592145,

which improves on the single prime result by about 1.73 x 107°.
By combining the medium primes method together with the large primes method,
we can further improve the lower bound given by Deléglise. In particular, we have

the following theorem.

Theorem 4.5. The density of abundant numbers can be bounded below by

do/ > dT()(Z,y) +d$2/p1 +dﬂp2.

In particular,

d.o/ > 0.247616464,

which is an improvement of approximately 1.65 x 10™* over the value of the lower

bound found by Deléglise.

Proof. As noted earlier, the subsets of abundant numbers considered in each of these

new methods are disjoint from 7 (z, y). In fact these new sets are also disjoint to each

79



4.2 Strategies for upper bound improvements

other, as can be seen by comparing the y-smooth parts of the members. In addition,
note that for the medium primes method we consider numbers having y-smooth part
abundant, while the large primes method considers numbers having y-smooth part
deficient. This proves the lower bound expression.

Using the various methods with parameters y = 500, z = 10", and ppax = 5 x 107,

we calculate the stated value for the lower bound expression. O]

4.2 Strategies for upper bound improvements

Recall the Behrend-Deléglise upper bound method of Section 3.1. We reproduce the

upper bound expression (3.5) here:

Ay ashin 1
dd@(gE M+1—F(y)§ -
n n

n<z n<

z
P(n)<y P(n)<y

The first sum involves the expression fly,a, which is an upper bound for the density
d <7, .. Thus one strategy for improving the Behrend-Deléglise upper bound method
is to improve the upper bound on d 7, .

We will also investigate the upper bound analogues of the large primes method of
Subsection 4.1.3. As these methods also rely on d .7, ,,, the improvements in bounding
d <7, , will carry over to improvements in the upper bound version of the large primes

method as well.
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4.2.1 Improving bounds on d &,

The Behrend moment method of Proposition 2.16 bounds d <7, , by using moments
M, (hy) of hy, as defined in Section 2.3. If we instead make explicit an asymptotic
estimate for d 7, , as a — 17 we can directly find both upper and lower bounds for
the density. We will also modify the original moment method to find an improved
upper bound for d %7, ,. This will require first calculating to many decimal digits the

moments of A,.

Using asymptotic estimates for d #7, ,

Recall the definition of d o7, , from Section 2.3. The Behrend moment method does
not do well when « is near 1. In fact, for a sufficiently close to 1, the trivial bound

F(y) is used. We can see this by comparing the two bounds:
= a < M. (hy).

Since M, (h,) increases with r, the trivial bound is better than the moment method
when 1 < o < M;(hy).

However, by studying the asymptotic behavior of d 47, , as &« — 17, we know that
the trivial bound F'(y) is far from the actual value of d o7, ,, in the interval (1, M;(hy)).
By making the asymptotic estimate explicit, we are able to find a non-trivial upper
bound for values of a in this region.

The asymptotic behavior of the function d 7, has been studied for the case @ —
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17. In particular, Erdés found in [13] that as e — 07,

-

L—dehe=(1+o() —

By using known explicit bounds on the distribution of primes, and applying these
to the proof of the asymptotic result, we can find an upper bound for d «7,. An

analogous argument applies for d <7, ,.

Explicit Erd6s bounds

We will determine explicit upper and lower bounds on d 7, 1, for y < e~ '. Let n be
an integer with h(n) < 1+ ¢. Note that n is not divisible by any prime ¢ < ¢!, since
if it were, then

1
h(n) > h(q) =14+ ->1+c¢,
q

a contradiction. Thus for any prime p < e~! we have
{n:hn)<l+erC{n:(n, () =1}
This gives us the inequality of their densities,
1—da, < F(eh).

Since

{n:(n,Il(y)) =1,h(n) <1+e} C{n:h(n) <1+e},
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we also get the density relation

Fy) — dyure < F(e). (4.12)

Note that since y < 7!, F(y) > F(e™!), and we have found a nontrivial inequality.

Solving the inequality (4.12) for d <7, 1. gives us the lower bound for y < e™! of

Fly) - P(e™) < d . (4.13)

We next work on determining an upper bound for d &, 1, when 2 < y < ¢ %
First we determine a property of numbers n not divisible by any primes p < e~ ! such
that h(n) > 1+e. In particular we will show that such numbers n must have for some
positive integer ¢ at least ¢ prime factors in the interval J;, = (4" te~1, 4], We will
call this property on n property A. We will say that a number n has property A; if it
has at least ¢ prime factors in J; for a particluar t.

Suppose n does not have property A. Then

on) n q - q
— L — = - < L
n (n) q— [111 q—1
q‘n t:1 qEJt
qln
<epY Yoo (1415
t=1 q€|Jt
q|n
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Next we use the bound 2 < ¢! so that

[e.9]

t—1 t—1 2¢
o) iy <o o (1 )
t=1
t—1 1
<ewed o (14 45

t=1

116
=exp ——¢
P 925
using
!
(t—1)a" ' =
; (1—«)?
for |a| < 1.

We now use the estimate
expzr <142 -1z <14 1.3z

for 0 < x <1/2 to get

116
— 1
h(n )<exp225e< +0.7e.

This contradicts our hypothesis, establishing that property A holds for n.

Next we estimate the density of the numbers satisfying property A;. Let the
integers ay, as, . .., a; denote the numbers with exactly ¢ prime factors from J;. Then
the density of multiples a;m with (m,II(e7!)) =1 is

F(efl)‘

Q;

Thus, the density of integers containing at least ¢ prime factors from J;, namely those
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having property Ay, is bounded by

By the multinomial theorem, we have

ii < —@’E‘” 2 -

i=1

Calling .#; the set of numbers having property A¢, we thus have

(Sred)”

d.7, < F(e) 0

Summing this inequality over all ¢, we assert that

dU%<F -1 iﬂ (4.14)

t=1

To prove this, we must show that

i d < =0.

In fact, since

Zl = loglogx + O(1),

p<w
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we have

1
Z — = loglog(4'e ") — loglog(4"'e ') + O(1)

pEJt
log 4
o8 ( 10g4—|—10g(4t161)> +o)

—0(1)

for t > 1. Thus the sequence

Z - (4.15)

pGJt

in t is bounded, say by some bound C', so

d[j% SF(E_I)if—'t.
t=to t=to

Since the sum on the right side is the tail of the Maclaurin series for ¢“, which
converges, we have shown that the bound (4.14) holds.
Since the set of numbers satisfying property A; for each ¢ contains the numbers n

such that h(n) > 1+ € and (n,II(e7!)) = 1, we have

dd.<d|J A

t=to
In fact, since 2 < y < e !, we have by (4.14) the upper bound

t
= (Spen) 1)
d . < Fe) Y A2/ ”E"”’ (4.16)

t=1

In practice, we set up an array for the sum of reciprocal primes for primes up to
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Pmax S0 that we may calculate (4.15) for ¢ satisfying 4%¢™! < puax. For larger ¢, we
may use Dusart’s upper bound (4.11) for the sum of reciprocal primes.

This gives us a bound for (4.15) for ¢t when 4%¢™! > pp., provided 10372 < prax-
The bound is

Zl<lo log 4t + ! + !
- €
pEJi o 10log?4te=! ~ 15log®4te-!
1 4
— loglog4'~tet + +
808 10 log? 4t le=1  15log® 4t-1e~!

1 ( log 4te~1 ) N 4
= 10
& 1og4t L1 1010g Je 1 Tplogidte 1

+ +
10log? 4t-1e=1  15]og® 4t—1e-!

= log (1 + 0g4 ) + ! + 1
log 4t—1e—1 10log? 4te=1  15log® 4te—1
1 4
* 101log? 4t-1¢-1 * 151og® 4t-1e-1

= Ut'

From the final expression it is clear that as t increases, U; decreases, so we can
calculate the initial terms of the sum for ¢ up to some bound 7', and then estimate

the tail of the sum as an exponential, as follows:

t=1 t=1 t=0

Thus the density d @7 -1, has upper bound

T ( q€J 1>t T ut
_ t q _
d 114 < F(e D) E + exp(Urt1) — E i,ﬂ = At 14
t=1 t=0 ’

(4.17)
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We now use that for p < e !,

Flp)—d 1 c=F(e') —ddi1 .. (4.18)

This comes from the observation that the sets which the densities represent are equal:

{n:(n,0(p)=1hn)<l+e={n:(n") =1h(n) <1+e},

which can be seen by the following observation. If n is in the left hand set, h(n) < 1+e€,

1

and no prime ¢ < p < e ! can divide n since otherwise h(n) > h(q) > 1+ ¢, a

contradiction. Thus n is in the right hand set. Likewise if n is in the right hand set,
h(n) < 1+¢, and since p < ¢!, it cannot divide n. Thus the two sets in question are
equal.

Using equation (4.18) with inequality (4.17), we arrive at the bound

d%,l—i—e = F(P) - F(E_l) + d%*1,1+e

< Fp) = F(e™') + A ppe

Thus, together with (4.13) and (4.17), we have the following theorem.

Theorem 4.6. For prime p < e 1,

F(p) = F(e) <d iy < Fp) = F(e1) + At 14,
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where

t
— (ZqE]t %) r Ut
Acigpe = F(e) Z " exp(Ur41) — Z ZH
=1 =0

The base 4 in property A, which was taken directly from Erdés’ paper [13], is a
convenient integral value to use. However, we can also replace this base in the interval
J; by a more optimal base. Suppose we call this base ¢, so that we are considering
the interval J; = [¢!" e, cfe71). The property corresponding to property A, which
we call property B, only holds for certain values of ¢. Tracing through our argument,
we find that ¢ must satisfy the condition

c(*+3c+1)
@17

2(ve—1) <1.

The smallest we can take c is around 3.222.

In practice, the value 7" in Theorem 4.18 is chosen to be the largest value that can
be used given our posession of primes up to puax. Namely, we let T be the largest ¢
such that cle™! < prax.

We will illustrate the effectiveness of this method by comparing it with the original
method at a certain value of €. Neither the Deléglise upper bound method nor the
reduced moment upper bound method perform well when 1 + € is near M;(h,). For
instance, each of these first moment methods gives the trivial upper bound F(y)
at 1 4+ e = M;(h,). In contrast, we see a nontrivial improvement when we use the

asymptotic method of this section at this value. We find with ¢ = 4 that

A o011, (hepo) < 0.0330949555,
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4.2 Strategies for upper bound improvements

as opposed to the trivial bound

d 00 01, (he) < F(500) = 0.0896097368 . . . .

Adjusting the value of ¢ to 3.222, we see an improvement to

d 00 01, (hsgy) < 0.0306312737.

We may compare this value to the corresponding lower bound,

d 00,1, (hsee) = F(500) — F(e ") = 0.0213253662.

The (-factor method

For Deléglise’s program, upper bounds are calculated for the moments M, (h,) of h,
in the following manner. First the moments are expressed as Fuler products, and
then upper bounds are determined for each factor, treating the case of large and
small primes separately. In general this method does not determine M, (h,) to high
precision. By using a different approach, we will find estimates of M, (h,) for the first
few values of r that are correct to many decimal places.

This approach, which we will call the (-factor method, begins with the Euler
product of M, (h,) and accelerates the convergence of this product by expressing this
Euler product in terms of products of ((n) and a remainder factor which converges
quickly. The factor involving ((n) can be quickly computed, using, for instance, the
computer program PARI. This program calculates ((n) for even n using Bernoulli

numbers, while for odd n modular forms are used.
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4.2 Strategies for upper bound improvements

Recall that the Euler product representation of M, (h,) is given by

Mr(hy):H<1+@+LpQ)+---) :H(1+s(p,r))

2
P>y p p P>y

Wheres(p,r):%jupg’;)_F...and
N 11 1\" 1 1 1y
pp*)=(1+-F+ 5+ +— | —(1+=-F 5+ +—] .
p P p p P p

As it stands, s(p,r) is an infinite series. It would be convenient to find a closed

form expression for calculations. One such closed form can be found as follows.
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4.2 Strategies for upper bound improvements

Remark 4.7. Behrend in [4] gives the alternative expression

1+wm:@¥§:§FWC%f%i

We will not be using this expression in what follows.

In particular, we find for r = 1,

1
for r = 2,
(v.2) 2p p+1 23 4+ p? — 1
8p7 = - = )
p-DE*-1) @@-HE*-1) @E-1D(@+)E*+p+1)
for r = 3,

3l +pt—pP—p+1
(p—1@>-1)p'—1)

s(p,3) =

and for r = 4,

_4p11+2p10+2p9+p8+3p7_2p6+p5+p3+p_1

. 4) - D D = V0P — 1)

We now return our attention to the Euler products. Note that for » = 1 and

y=1,

Mi(hy) =] (1 + p21_ 1) = ((2).

p

We can find the value of ((2) using the computer program PARI, which, in this case

amounts to calculating the value of 72/6. Then using this value as a starting point,
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4.2 Strategies for upper bound improvements

we may calculate M;(h,) for larger values of y by dividing ¢(2) by

H<1+p21—1)’

p<y

since the latter is a finite calculation.

For the case of r = 2, we note that

2p3 +p2 -1
(p—12(p+1(P*+p+1)

1+ s(p,2) =1+ :1+§(1+0(1)).

Since

<1+ ! )2:1+%(1+0(1)),

p—1

we may factor this term out of 1 + s(p, 2), resulting in the factorization

i~ (V) (1)
1+ =1+ 1+ —=(1+o0(1 .
e- oy \ 1) Urpt e
By using a computer algebra system such as Maple, we find that ¢ = 1. We thus

continue this factorization process by factoring out

pP-1

At the next step we find that what remains is the factor

which we recognize as a term of the Euler product for 1/¢{(4). Thus in the case r = 2,
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4.2 Strategies for upper bound improvements

we have found that
((2)%¢(3)

[T0+ 5.2 =~

p

We will call the above method of factoring out successive terms of ((s) the (-factor

method. By applying the (-factor method to the case r = 3, we find that

@B (P
[T+ = S T (1- 5igy)

p p

where P3(z) = 3z% + 2% + 322 + 1 and Q3(z) = 23(2* + 1)3. For r = 4, we find

_ C@2)%E)° _ Baulp)
1;[“ T A) =20y 1;[ (1 Q4(p)> ’

where

Py(z) = 112" + 222" + 312'% 4 162" — 32 — 182" — 192" — 192!

— 19210 — 42 + 1228 + 272" + 152° + 5% — Tat —4a® —42® — 2 — 1

and

Qu(x) =2 + 13 + 2 + 22 + o+ 1).

Unfortunately, as is hinted by comparing Ps(p)/Qs(p) and Py(p)/Q4(p), the complex-
ity of the rational functions involved appears to increase as r increases. This has the
effect of slowing down the computer calculations.

By factoring values ((n) for larger n from Mj(h), it is observed that this process

also appears to increase the complexity of the rational function of the remainder term.
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4.2 Strategies for upper bound improvements

By proceeding in this way we find that

G2 B)CMNE(8)¢ (11)¢*(12)¢M (16)¢ ™ (17)¢(20) - - -
C2(4)¢3(5)C(6)¢10(9)¢? (10)¢O(13)¢(14)¢*6(15)¢ 15 (18)¢30(19) - - -

M3(h) =

Note that the (-factorization appears to continue indefinitely. This is, in fact, the

case. First, we observe that the factors of ((n) are of the form

’Vl

p
pr—1

Thus, in particular, finite products and quotients of ((n) have factors with numerators
and denominators of the form p® [[, ¢;(p), where ¢; are cyclotomic polynomials. Thus
if terms of M, (h) are not quotients of cyclotomic polynomials in p or powers of p,
they cannot be expressed as a finite product of ((n). For instance, for Ms(h), we

have
prpt=p*+3p* —p+1)
(p—1)@*—1)(p*—1)

The polynomial in p in the numerator is not a product of cyclotomic polynomials,

1+ s(p,3) =

which can be seen by using PARI to identify at least one complex root with norm not
equal to 1. Similarly, we find for My(h) that 1+ s(p,4) has in its numerator a factor
p® + 3p* + 4p® + 3p? + 1, with at least one complex root with norm not equal to 1.
Since in general we cannot hope for a terminating product of terms involving {(n),
we discuss how to handle a remainder factor from a (-factorization which is an infinite
product. In particular, this is how we will bound the values of M, (h) in the case of
r = 3 and r = 4. We will compute the bounds by multiplying the terms over the

primes p < pg for some bound pg, and then estimate the error incurred by truncating
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4.2 Strategies for upper bound improvements

the product at py. We will call the tail of the product T'(py), so that

= T G)

P>po

Using the inequality log(1 + ) < x which is valid for x > —1, we can upper bound

T'(po) by
b.(p) £ (p)
P <log 1 (1 - Qr(p))> =P <_ 2 Qr(p)> ’

p>Ppo P>Ppo
provided that P.(z)/Q.(x) < 1 for z > py. We must then find a lower bound for the

suim

P.(p)
Qr(p)

2.

P>po

Since we will subsequently want an upper bound for this sum as well, we will treat

—, ¢t denote constants such that

both bounds concurrently. We will first let ¢

~ —

Q-(z) a°

for some integer ¢ as x — oco. Then it remains to bound

Zi: [?]m+5/m@dt

5 6
P>Dpo p Po n !
7t

Do Po t
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4.2 Strategies for upper bound improvements

where the first term can be calculated directly.

To bound the integral, we will use the bounds for m(x) of Dusart [10],

w(z) > —2 <1+ L4 1'8) (4.19)

~ logz logz  log”x

for x > 32299 and

x 1 2.51
m(z) < 1+ +—
log x logz  log”x
for x > 355991.

We will show in detail only the derivation of the lower bound for

® w(t
[ 04,
Po t

as the upper bound proceeds analogously.

By (4.19), we begin by writing

/Ooﬁ(t)ch»/o<> ! + ! + L8 dt
w10 T, \tPlogt  tdlog’t  t5log’t

Since for all real s we have

* 1 1 s [ 1
= —/ S —; 4.20
/po t5log® t Apglog®po 4 J,, tolog®tlt (4.20)

we take s = 1,2, and 3 to arrive at the bound

/Ooﬁ(t) Sl o1 3 1 57 711
o 18 T Apilogpy  16pilog’p,  160pilog’p, 160 J,, t3log't
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4.2 Strategies for upper bound improvements

We next need an upper bound for the integral

o 1
/ EELL
p tolog™t

which we can find by noting that

9 1 [~ |
/ - / LT — (4.21)
po T log™ ¢t log™ po Do t 4py log™ po

However, we can do slightly better: If we use the more conservative bound

<1 1 <1
5—4dt S 5 3 dt
p tolog't logpo J,, t°logt

we may use Equation (4.20) for s = 3 to get

o 1 1 1 3 [ 1
etz S Tods 1] Froaar™)
p tolog™t ogpo \4pylog’py 4./, tolog™t

Solving this inequality for the integral, we arrive at the bound

| 1 1
51 gl dt < A 3.
b tPloght 4logpo + 3 pjlog” po

which is slightly better than Inequality (4.21). Thus,

1 (t) 11 31 57 1
6 4t = T e T P
- t 4 p; log po 16p0 log” po 160100 log” po
171 1
160 (4 log po + 3)pg log® po’
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which simplifies to

/°°7r(t) L 11 3 <2010gpo+53> 1
Ppo

_— 7 — _.I_ .
5 " T 4dpilogpy 80 \ 4logpo+3 /) pilog®po

The upper bound calculation begins in the same way, giving

/Ooﬂ(t) PR +3 1 +427 1 1281/°° Lo
b 10 T Apilogpy  16pilog®py 200 pilog’p, 800 J,, t5loght

At this point the upper bound calculation uses, instead of (4.20), the inequality

o 1 1 o0 1
o T Tt | ms
p tolog™t 4p;log” po p, tolog’t
1 o 1
I ER s / St
dpglog®po Sy, tolog™t

Now solving for our desired bound, we have

< 1
a2
po t7loght 8p log™ po

Thus

- + — + — .
6 7~ Apilogpy  16pilogip, 200 pilog®p, 6400 pdlog® po

< (t 11 3 1 27 1 1281 1
/ () (4.22)
po

Collecting the appropriate bounds for an upper bound for T'(pg), which we will

denote T (pg), we have

T* () = exp(c; (W(po)_§';_15 <2010gp0—|—53> 1 ))

5 4 pilogpe 80 \ 4logpy +3 pelog® po
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4.2 Strategies for upper bound improvements

Next we find a lower bound 7'~ (pg) for T'(py). To do this we must bound below

I (1 52) o (T (1- £2)).

P>Po p>p

the product

Using the power series for —log(1 — ), we have the upper bound
22 o8
B * 3 |
x
2 1—=z

for 0 < z < 1. Thus if P.(z)/Q,(x) is decreasing and is in the interval [0,1) for

—log(l—z)=a+

x > po, then we have

P>po Q(po) ) P>P0

P.(p) 1 P (p)
o (Z o (1 QT(Z)» s S a0 () i

Again if P,(z)/Q,(z) is decreasing, then so is P?(x)/Q?*(z) and we have the inequality

2(p) > P2(t)
> 5 o™

P>p0 p

Using this along with our bound (4.22), we can let T~ (po) be

( ( m(p) 5 1 15 1 427 1 1281 1 )
exp B ——— _
Py 4 po log po 16 Pe log2 Do 40 p} log‘5 po 1280 pg 10g4 Do
1 > P2(t
- (t )dt

2 (1 - Qr(p?]%) Qi(t)

The conditions on P,(z)/Q,(x) are checked for each of the cases r = 3 and r = 4.
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4.2 Strategies for upper bound improvements

It is found for both r = 3 and r = 4 that P,(x)/Q,(z) is less than 1 for all z > 1 and
decreases for > 0. Thus lim, .« P.(2)/Q,(x) = 0, and we have 0 < P,.(z)/Q.(z) < 1
for x > 1. We find that for py = 105, we can take c; = 3, ¢4 = 3.000001, ¢; = 11,

and ¢ = 11.000011. We calculate T (py) and T~ (pg) for each r to find that

Ms(hso) = 1.00082088048923772983550566523 + 5.08 x 1027

and

My (hseo) = 1.00109523033158618992636631361 & 1.87 x 10~ 2°.

The error in these calculations is due to using c¢*/p® as upper and lower bound
approximations to P,(x)/Q,(z). If we needed higher precision we could improve the

bounds by proceeding as follows: By polynomial division we find, say for r = 3, that

The reciprocal sums of prime powers can then be calculated as in [17], where M6bius

inversion is used to write the sum in terms of the Riemann (-function as

;]% = ;@logg(k’s).

As we have seen, computing integral values of ( is fast, so we can calculate successive
sums of primes over 3/p®, 1/p°®, and so on to high precision.
To summarize, we find the following exact values for the moments of hsgg up to

the decimal digits shown. We have also shown in parentheses the original Deléglise
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4.2 Strategies for upper bound improvements

upper bounds for the moments M;, M,, and M, for comparison.

M (hsoo) = 1.00027326596605362343243031087 & 5.6 x 1072, (1.000273298199. . .
My (hsgo) = 1.00054689258288508841552275272 + 2.7 x 1073, (1.000546957066 . . .
M3 (hsoo) = 1.00082088048923772983550566523 + 5.08 x 1027,

My (hsoo) = 1.00109523032522575502928409862 + 1.88 x 1072, (1.001095359363 . . .

To determine how these new moments affect the value of the Deléglise bound,
we make the following modifications to the Deléglise code. Recall that Deléglise’s
program uses only rth moments with r equalling powers of 2. We replace the Deléglise
values for the upper bounds of the moments for r = 1,2, and 4 with our new values.
We also include the value of the moment for » = 3. Keeping the parameters y = 500
and z = 10* fixed along with the Deléglise bounds for moments with » > 4, we find

the new upper bound for the density of abundant numbers

0.24796597989 ... (0.24796600460 . . .)

(where the previous upper bound is shown in parentheses for comparison). This is
an improvement of about 2.47 x 10~® from the Deléglise upper bound. Thus this
method does not, by itself, justify the effort required to implement it. In fact, we will

be making good use of these high-precision moment values in the next subsection.
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4.2 Strategies for upper bound improvements

The reduced moment method

In this section we modify the Behrend moment method from Proposition 2.16 with
the goal of improving on the upper bound. The Behrend moment method can be
viewed as starting with the polynomial P(z) = 2", and using Proposition 2.14 on the
arithmetic function P(h,). By choosing a different polynomial, we could hope for an

improved upper bound. One such choice yields the following proposition.

Proposition 4.8. For each integer r > 1 and o > 1, we have

d o0 < F(y)%,

where

M, (hy —1) = i(—w’ (7’) M;(hy).

i=0

Proof. We repeat the argument for Proposition 2.16 using Proposition 2.14 with arith-
metic function P(h,), where P(x) = (z—1)"+1, and ap = 1. Note that P(h,(n)) > 1
for all n. Also observe that the mean of P(h,) exists and is a linear combination of

the ith moments of h, for ¢ =0,...,7. m

We will call the moments M, (h, — 1) the reduced rth moments of h,. Note that
the computation of M, (h, — 1) for » > 1 involves negative terms. Thus the Deléglise
upper bounds for M, (h,) cannot be used since these do not in general have sufficient
precision. Instead we use the (-factor method to determine the first few moments to
many decimal places, and then use these values to compute the reduced moments.

Based on our calculations of M, (hso) for r =1,... 4, we find

M (hsoo — 1) = 2.7326596605362343243031087 x 107* 4+ 5.6 x 10727,
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4.2 Strategies for upper bound improvements

My (hsoo — 1) = 3.6065077784155066213098 x 1077 + 1.39 x 10~ %,
Ms(hsoo — 1) = 6.3874333488622833968 x 1070+ 5.11 x 10”2,

My (hsoo — 1) = 1.37087245067671054 x 1071 £3.92 x 107%.

Note that, compared to the Behrend moment method, the reduced moment method
has the disadvantage that all moments M;(h,) for s < must be known to high pre-
cision to calculate M, (h, —1). Thus, in practice, we may calculate M;(h, — 1) up to
a certain point, as we have done up to r = 4.

Recall that the Deléglise bound does not do better than the trivial bound for
values near o = 1. This is true for the reduced moment method as well. We can see

this by writing

< F(y) — a> /M. (h,—1)+ 1.

Thus for sufficiently small o, the asymptotic method outperforms the reduced moment
method.
Using the reduced moment method up to r = 4, we find for y = 500, z = 104
that
d.o/ <0.24794525016,

which improves the Deléglise upper bound by about 2.07 x 107°.

To conclude this subsection we provide a table of upper bounds for d () for
various values of a. We will compare Deléglise’s upper bounds with the asymptotic
bound and reduced moment bound. Note that Deléglise’s bounds are better for large

«, while the asymptotic bound is better for small a. The reduced moment bound
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performs somewhere in between. However, it should be noted that Deléglise used
very high moments for his method, while we have only used moments up to r = 4 for

the reduced moments method.

Q@ Deléglise asymptotic reduced
1.00001 0.08961 0.04578 0.08961
1.0001 0.08961 0.03634 0.08961

1.001 0.02450 0.02195 0.02449
1.0015 0.01604 0.01859 0.01437
1.002 0.009414 DNE 0.007155
1.005 | 4.256 x 107 DNE 1.966 x 10~*
1.01 1.640 x 107 DNE 1.229 x 107

Remark 4.9. Since Deléglise’s bounds at high moments are better than the reduced
moments up to r = 4 for large «,, we can improve the density upper bound by either
calculating reduced moments up to a level comparable to that of Deléglise, or simply
use the Deléglise bounds for large «. In what follows, this is not done, but rather
only the asymptotic method and the reduced moment method are used. The Deléglise

bounds will be incorporated along with the two new methods in future work.

4.2.2 Piggybacking onto the large primes method

We return our attention to the Deléglise method of bounding the density of non-
deficient numbers in Section 3.1. Recall that there are two approximations made:
bounding the densities of the sets .#,({n}) N </ for y-smooth n < z, and using the
density of .#,({n}) for y-smooth n > z in place of only the nondeficient members of

this set. Note in the first idea that if n < 2 is nondeficient, then the density of the
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set A, ({n}) N < is in fact .#,({n}), and this density is accounted for in the lower

bound. Thus we can consider the part of the upper bound sum

T Ay 2/n(n)
n

n<z
P(n)<y
h(n)<2

as “piggybacking” onto the lower bound sum

Z: % (4.23)

P(n)<y
h(n)>2

In this section we consider how we can analogously piggyback an upper bound density
onto each of the large primes method lower bounds. We will first examine the nonde-
ficient numbers not yet considered in the single large primes method to determine an
upper bound for the density of these numbers. We will afterwards look at how this
is adapted to include also the double large primes method.

Recall from Subsection 4.1.3 that the single large primes lower bound method
computes the density of the sets .#,_1({np}) for y-smooth deficient n < z such that
p € (y,h(n)/(2 — h(n))]. These sets are considered in conjunction with the sets
M, ({n}) for y-smooth nondeficient n < z to determine a lower bound for the density
of nondeficient numbers. As before, let nm be a number such that n is y-smooth and
(m, P(y)) = 1. Then either n < z or n > z. For these numbers n > z, we retain

Deléglise’s expression

1-F(y) Y % (4.24)

P(n)<y

for an upper bound for the density of such nondeficient nm. If n < z, then the
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remaining nondeficient numbers nm are such that h(n) < 2. The single large primes

method handles the case

2——— < h(n) <2 (4.25)

and

Suppose h(n) satisfies the bounds 4.25 but p(m) > h(n)/(2 — h(n)). Nondeficient
numbers in this case have not been included in the single large primes method. Thus

we must consider the density of the set

M v ({n}) N

2—h(n)

But we know that

1
d.Z o ({n})ﬂ%: ﬁdﬂ h(n)

_2 -
2—h(n) 2—h(n)’ h(n)

Summing over the numbers n in this case, we arrive at the density expression

1
Z —d%h(n) 2 . (426)
st n Z—h(n) R(n)
P(n)<y

2—ﬁ<h(n)<2

We also have the case h(n) < 2 —2/(y + 1) to consider. In this case, we may

proceed as did Deléglise and use the bound

1
> s A (4.27)
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Combining the density bounds (4.23), (4.3), (4.26), (4.27), and (4.24), we arrive

at the upper bound expression

av< 3 Wy %(F@_F(;(—Z()n)))

n<lz n<z
P(n)<y P(n)<y
h(n)>2 27ﬁ<h(n)<2
1 1
fr T 2l
P(n)<y P(n)<y
2— 27 <h(n)<2 h(n)<2— 27
1
1—-F —. (4.28
PP 3 (029)
P(n)<y

We will call this the single large primes upper bound method.

Remark 4.10. It may be possible to find upper bounds corresponding to the small or
medium primes lower bound methods. However, the attempts so far have not yielded

any improvements.

We next consider piggybacking onto the two large primes lower bound method.
The sets of nondeficient numbers which are not considered by the Deléglise, single
large primes, and two large primes methods fall into four categories. First, we have
the case where for y-smooth n we have n > z, which we will handle as above with
the sum (4.24).

The remaining cases involve y-smooth n < z. Second, we have the case h(npip;) <
2, where p; and ps are the first two primes greater than y. Such n are too deficient for
the two large primes method to apply. We will bound the density of such multiples

of n by

- (4.29)
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as in the Deléglise method.

Third, we have h(n) € (by,2) and p > as, where by and as are defined in Subsection
4.1.3. This is the case where there are no primes ¢ > p such that h(npg) > 2.
The nondeficient numbers corresponding to this case are the multiples mn where

(m,I(az)) = 1 and h(mn) > 2, which have density

a2, 2~
a0 (4.30)

n

Finally, we have h(n) € (b2,2), a1 < p < ag, where b; and a; are also defined in
Subsection 4.1.3. This is the case where there are primes ¢ > p such that h(npq) > 2.
However, h(npq') < 2 for sufficiently large primes ¢', namely when ¢’ > h(np)/(2 —
h(np)). Repeating our argument for the single large primes upper bound method, we

find that the corresponding density is

d ﬂ h(np) 2

2—h(np)’ h(np)

np

In fact, we must account for powers of primes p as well. We do this by using the

upper bound
[ele) d% h(np?) 2 dd h(np) 2

2*h(np"')’h(npi) < 2—h(np)’ h(n)h(p>) 4.31
; np’ - onlp-1) (4.31)

due to the monotonicity of d 7, , in each of y and «. Here h(p>) is shorthand for
lim; .o 1(p') = p/(p — 1). The infinite sum can be seen to represent the density of
the corresponding infinite union as before in Subsection 4.1.3 by convergence of the
geometric series.

Thus piggybacking onto the two large primes lower bound method we have the
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combined density from (4.24), (4.29), (4.30), and (4.31), namely

R
n
n<lz
P(n)<y
h(n)<2/h(p1p2)
1 dﬂ%%
—h(np) ' h(n)h(p>®
D DR LE TR » o1
n<z max{y,a1 }<p<az
P(n)<y
h(n)€[2/h(p1p2),2)
1
1—-F —. (4.32
EERAUD ML
P(n)<y

Thus we have found what we call the two large primes upper bound by adding (4.10)
and (4.32).

Proposition 4.11. The density of abundant numbers is bounded above by

1
o< 3 (F) — Fla) +d s, 2 )
P(n)<y
ba<h(n)<2
h(np) ) .
- ¥ 1 3 F <2*h<”P) d%fﬁﬁwm
n p—1
n<z max{y,a1 }<p<az
P(n)<y
ba<h(n)<2
4%t !
+ Y 1= Fy) Y
n<z n<z
P(n)<y P(n)<y
h(n)<2/h(p1p2) h(n)<2

where a; = N/h(n)/ (V2 — /h(n)) and b; = 2(1 — 1/(y + 1))
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4.2 Strategies for upper bound improvements

Computational issues

We now address several computational issues that arise due to the size of the primes
required, which may exceed our bound p,ay.
To begin, we will address the inner sum in the density bound of Proposition 4.11.

When ppax < as, we bound the sum

Ja (M) — A ninp)

2
2—h(np) 2= h(np) A

2

maX{pmaxyal }<p§a2

p—1

analogously as in the corresponding lower bound method. Namely, we replace the
expression F'(h(np)/(2 — h(np)) by its minimum possible value F'(az), and note that
d <7, . increases when y decreases, and also increases when o decreases. Thus we

replace the expressions

h(np) 2
2 — h(np) h(n)h(p>)

by their smallest possible values for p € (max{pmax, a1}, as]. These are

a(n) (1+ 1) 5
2—h(n) (1+2) pm) (1454

respectively. Then it remains to bound

1
PO

pe(pmax;aﬂ
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4.2 Strategies for upper bound improvements

We do this by taking

and then the sum

pe(pmamaﬂ

is bounded by using Dusart’s bounds (4.11) on the sum of reciprocal primes.

Computing reduced moments M, (h, — 1)

In order to implement the foregoing methods into a computer program, it would be
useful to have available upper bounds for d 7, ,, for large values of y. We next discuss
two ways in which these can be found. The first discusses the strategy for y that are
small enough so that all primes up to some p,., can be computed, in which case we
will be using the reduced moment method. This means that we need upper bounds
on the reduced moments M, (h, — 1) for y < ppax. The second method addresses the
case where Yy > puyax, in which case we will simply use an estimate for the Deléglise

first moment upper bound expression.

Calculating M, (h, — 1) for y < pmax. One way to find the values M, (h, — 1) is
to let PARI do all the calculations beforehand and store the values in a data file for
the program to access. This approach works, but it would be preferable not to have
to store these values but rather to compute them at runtime, since the size of a file
storing the rth moments up to 7.« would be on the order of 10 - 7,4z - T(Pmax) bytes,
assuming a long double precision float takes 10 bytes. This is about 120 megabytes
for our choice of 7y = 4 and pmax = 5 x 107. However, we must be careful when

implementing a computation for M, (h, — 1). We will illustrate the issue first for the
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4.2 Strategies for upper bound improvements

case M, (hy).

A problem which arises when storing values of M, (h,) on a computer is that for
large y, the values of M, (h,) behave like 1 + € for some small € > 0. For instance,
we have seen that the first few moments of hsgy are of the form 1.000%. In this case
we would prefer to store the value M, (h,) — 1, as this would allow us to keep higher
precision. In fact, this is precisely how Deléglise stores the moments in his program.

This point is underscored when we try to compute values of M, (h, — 1). Recall

that the fourth reduced moment has a value of about
M4(h500 — 1) = 1.371 X 10_12.

If we were to attempt to calculate this moment directly from the moments M, (hsq),
r=1,...,4, then even with long double precision which allows 19 digits to be stored,
we would end up with only 7 significant digits for My(h, — 1). This would only get
worse for larger values of 7.

We first prove the stated behavior of M,(y) and then show how the issue of

calculating M, (h, — 1) may be solved.

The behavior of M, (h,). In order to understand the behavior of M,(h,) as y
increases, we first estimate p, (p*, r) := h,(p*)"—h, (p"~!)". By the identity (a"—0") =
(a—b)(a"""+---+b""") and the observation that h,(p*) = hy (p"~") +  when p >y,

we have

py (0", 1) = hy(P*)" — hy(p* )"

= (hy(8") = by ("N Ry ()71 4+ By (017
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4.2 Strategies for upper bound improvements

1 -
SE'Thy@k) !
. r p r—1

Pk \p—1

r 1 -t
< (14— .
—ph ( +y—1)

Thus s(p,r) = @ 128 4 ... which we defined in subsection 4.2.1, is bounded by

p2

1 VP& 1 C
14+ — B —
T( + ) Zp% p2_1’

y—1 k=1

where C,., := r(1+1/(y — 1))"! only depends on r and y. Note that as y — oo,

C.,, — r, and also that ;;2;71 converges. Thus,

C, 1
Mr(hy) < H (1 + e _,yl) < exp (CMJZ pQ—_1> )

P>y P>y

and writing L, (h,) := M,(h,) — 1, we have L,(h,) — 0 as y — oo. In particular, we

find that

Ly(hy) = (7“+ r(ry_ Lo (Wyg 1>>) (yljgy o <y101ng>)
N ylggy o <y101gzy> ' .

Thus from a computational standpoint, we see that it is preferable to work with

the values of L, (h,) rather than M, (h,) since in general M, (h,) consists of a 1 followed
by a string of 0’s and then the digits of L,(h,).

If we are to work with L,(h,), we need an expression for finding M, (h, — 1) in
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4.2 Strategies for upper bound improvements

terms of L,(h,). This is easily found by the following calculation:

M,(h, — 1) = Z() 1) M;(h,)
2;@ Li(hy) + 1)
E;CG) 1) Li(hy) + 0"
:i(’) 1) Li(hy) + 0",

since >;_o (7)(=1)""" = (1 = 1)" = 0", and for the purposes of inversion we define

Lo(hy) =0, and adopt the convention that 0° = 1.

Computing L,(h,). In order to compute the value L,(h,) for a particular y, we
can begin with the value of L,(h,,) for a large value vy, y1 > y. Then by using a
relation between L, (h,,) and L,(h,, ), we can iteratively calculate L, (h,) for any
value y < y;. We will now find such an iterative relation.

We first observe that

1 + LT(hPi—1) = MT(hPi—1)
= My (hy, ) (1 + s(pi, 7))
= (14 Ly (hy,))(1 + 5(pi, 7))

=1+ Lr(hp,) + 5(]% T) + Lr(hpi)s(pi7 T)'

Thus
LT(hP¢—1) = LT(hZh) + S(pi7 T) + LT(hm)s(pi? T)? (434>
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4.2 Strategies for upper bound improvements

so that the calculation of L,(h,) no longer depends on M, (h,).

A further refinement. As we have seen, computing L, (h,) directly allows us to

use expressions of size approximately r/ylogy. In fact, for higher moments we can

do better. For instance, for r = 2, My(h, — 1) = Ly(hy) — 2Ly (h,), which is

1
()
ylog”y

by (4.33).
As a concrete example we have calculated for y = 5x 107 that Ly (h,) = 1.07x107?
and Ly(h,) ~ 2.14 x 10~?, while

Lo(hy) — 2Ly (h,) ~ 1.212536 x 1077

To take advantage of this situation we simply iterate the strategy used to solve the
initial moment calculation problem by again letting the contributions from the main
terms of L,(h,) cancel while keeping the remainder terms. Just as we have defined
L,(h,) as the secondary term in M, (h,), we will define K, (h,) = M,(h, — 1) where
we view K, (h,) as a smaller order term of L, (h,), so that

K, (hy) == Z (T) (—1)Li(h,) (4.35)

1

for integers r > 0, and Ky(h,) = 0. (Note that for r = 1, K;(h,) coincides with
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4.2 Strategies for upper bound improvements

Ly(hy).) By (4.34) and (4.35), we have

Kol ) =3 (1) -0 L)

=1 M

- Z <§> (_1)T_j(Lj(hp¢) + s(pi, J) + Lj(hpi)s(pi,j))

= K. (hy, +Z( ) ) s(pi, j +Z( ) )" Lj(hy,)s(pis 5)-

To remove the terms with L;(h,,) in the final sum above we note that by inversion

(see, for instance, 20, p. 192-3]) we have

where we have used the observation that My(h,) =1 and so Lg(h,) = 0. Thus

r J

i (;) (=1 Li(hy)s(pin ) =) (;) (1) s ) S (i) Ko(h

A

where we have used that Ko(h,,) = 0 and the convention that (}) = 0 when k > n.

We conclude that

K (hy,y) = Ky (hy,) =

> (5) o+ 2 (1)

By using this equation we are able to calculate values for K,(h,),r = 1,...,4,

) A’"l (Z - Z)(—l)“js(pi,j).

J J
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4.2 Strategies for upper bound improvements

beginning from y = 5 x 107 down to y = 0 while preserving high precision. As
an example, for our fourth moment calculation we begin with the value of Ky(h,),

y =5 x 107, calculated by PARI using the (-factor method,
3.29594356911638569265174956894439063553 x 10~
Calculating all values of K4(h,) down to y = 0, we arrive at the value
1.58798408739662063,

which agrees with the value found using the (-factor method by PARI to the given

number of digits.

Bounding d %7, , for y > pyax. In the case that y > pmax, we will use the first
moment Deléglise upper bound method. Thus, we need an upper bound approxima-
tion for M (h,), as well as an upper bound approximation for F(y). In addition, the
large primes upper bound method requires bounding —F'(y) for large y, so we will
also need a lower bound for F(y).

In fact, we can approximate these values using partial summation and Dusart’s
bounds for 7(y) and F(y), (4.19), (4.20), and (4.4).

It remains to bound above M (h,). Since

i) =T[(1- %) =ew <_210g (1_]9&)> D) P

P>y P>y p>y k=1

we seek an upper bound for the double sum in the exponent. We can bound the inner
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4.2 Strategies for upper bound improvements

sum from above by writing

= 1 = 1 1
< — = .
§ : 2% = § : 2% 2 _
ik =1 pr =1
Then by partial summation and Dusart’s bounds [10]

y 1 y 1.2762
1+ < 7(y) < 1+
log y logx ) 23599 y>1 logy log x

for m(y), which are valid for y > 599, we have
1 { 7(t) ro /OO 7(t)
E = +2 —2dt
2 _ 2 _ 3
P 1 t 1 ” y t
y 1 © 1.2762
< — 1 2 — 1+ —— ) dt.
B (92—1)10gy< +10gy)+ /y tQIOgt( " Togt

Now by integration by parts we have that

/001_{1}“/000575_1/000&
, t2logt | tlogt y , tlog’t  ylogy J, t2log’t’

Thus,

1 1 1 1 < dt °° 1.2762
Z 5 < - 1+ +2 — ——— | +2 ————dt
p?—1 ylogy log y ylogy y t*logt y t?log”t

P>y

1 1 +/°° 0.5524
~ylogy  ylog’y  J, t2logt

1 1 /000.5524dt
~ylogy  ylog’y  log’y J,  t2
1 0.4476

~ylogy  ylog?y’
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4.2 Strategies for upper bound improvements

Thus,

1 44
M(hy) < exp ( 0 76) |

ylogy  ylog’y
Note that since the argument in the exponential is small, the value after taking the
exponential is about 1 greater than the argument. In fact, we are actually interested
in the value M (h,) — 1. We can thus attempt to simplify this expression by removing
the exponential. Since

e’ — 1<z +a?

for x < 3/4, and
1

ylogy

4
< -
-3
for y > 2, we end up with the following bound.

Proposition 4.12. When y > 599, we have the explicit upper bound

1 0.4476 1 0.4476 \ 2
M(hy) -1< - 2 ( - 2 > :
ylogy  ylog®y ylogy  ylog®y

Large prime upper bound results. With upper bounds for d <7, , for large y
in hand, we are now prepared to implement the large primes upper bound method.
Using the single large primes upper bound method, we find for y = 500, z = 104,
and Ymae = 5 x 107, that

d.o/ < 0.247731321 . ..,

which is an improvement of about 2.14 x 10~ over the Deléglise upper bound of

0.247945250 . ... With the two large prime upper bound method, this improves to

d .o/ < 0.247665510. . .,
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4.3 The hybrid algorithm

which is an additional improvement over the single prime calculation of about 6.58 x

107°.

4.3 The hybrid algorithm

We will refer to the combination of all of the ideas presented in this chapter, with
the exception of the small primes method, as the hybrid algorithm. Using this hybrid
algorithm, we arrive at the following upper and lower bounds for d .o/, where y = 500,
2z = 10", and pmax = 5 x 107

0.247616464 < d o7 < 0.247656571.

The difference between the upper and lower bounds is about 4.01 x 1075,

For comparison, we display the original Deléglise bounds,
0.247451383 < d & < 0.247945251,

for which the difference between the upper and lower bounds is about 4.93 x 1074,

We summarize our results in a table.
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4.3 The hybrid algorithm
Method Lower Upper Difference
Deléglise | 0.2474513 | 0.2479453 | 4.94 x 1074
Small 2 | 0.2474605 " 4.85 x 107
Small 2, 3 | 0.2474610 " 4.84 x 1074
Medium | 0.2474757 " 4.70 x 1074
1 large | 0.2475747 | 0.2477314 | 1.57 x 10~*
1 lg, med | 0.2475991 " 1.32 x 107
2 large | 0.2475921 | 0.2476566 | 6.45 x 10~°
2 1g, med | 0.2476164 " 4.02 x 1075

If we now increase the value of z, we expect improved bounds for the density of

abundants. Choosing z = 10% and y = 500, we first use Deléglise’s original algorithm

for comparison. This gives the bounds

where the difference between the upper and lower bounds is about 4.89 x 10~4. Thus,
we see that simply choosing a larger value for z in the Deléglise program does not
yield a comparable improvement to the hybrid algorithm at z = 10,

If we use the hybrid algorithm again with z = 10%, y = 500, and py.c = 5 x 107,

we find the following bounds.

Theorem 4.13. The density of the set of abundant numbers has the bounds

0.2474678 < d &/ < 0.2479570,

0.2476171 < d o/ < 0.2476475,
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4.3 The hybrid algorithm

with a difference between the upper and lower bounds of 3.04 x 107>, Thus,

do/ =0.2476. ...

Finally, we include below the C++ code used to compute the results of the hybrid
method. The code is based on Deléglise’s, and is in fact a modification of his original
code which he has generously provided. In particular, his backtracking algorithm to

identify y-smooth numbers up to z has been left unchanged.

// abundll.cc

// Version 1.1 - the hybrid algorithm

#include<iostream>
#include<fstream>
#include<iomanip>

#include<cmath>

using namespace std;

typedef long long Long;

const Long PBD = 50000000; // upper bound for calculated primes

const Long KBD = 3001134; // pi(PBD)

// e {-\gamma}

const long double eneggam = 0.5614594835668851698241432148;
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4.3 The hybrid algorithm

long double F[KBD+1]; // F(k)
// upper and lower bounds for F(k)
long double Fupper(Long);

long double Flower(Long);

// upper and lower bounds for A(1/(u-1), k)
long double Aupper(long double, Long);

long double Alower(long double, Long);

// array for asymptotic method

long double AKarr [KBD+1];

long double sumpinv[KBD+1]; // sum of reciprocal primes up to p_k
// upper and lower bounds for sum of reciprocal primes up to x
long double pinvupper(long double x);

long double pinvlower(long double x);

Long pi[PBD+1]; // pi(x)
// upper and lower bounds for pi(x)
Long piupper(long double x);

Long pilower(long double x);

Long prime[KBD+1]; // p_k
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4.3 The hybrid algorithm

// upper and lower bounds for p_k
Long primeupper(Long k) ;

Long primelower (Long k) ;

long double L[5] [KBD+1]; // reduced moments

// default values for K, Y, N

int K=95;

Long Y=500;

Long N=1000;

long double Fy; // F(Y)

// bounds for large primes method

long double b1=2.0%(1.0-1.0/(Y+1.0));

long double b2=bl1*(1.0-1.0/(Y+1.0));

long double suminv_nab=1.0; // backtracking doesn’t include n=1.

// double primes sum

long double p2uppersum=0.0;

long double p2lowersum=0.0;

// small primes sum
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4.3 The hybrid algorithm

long double suminv_ab1=0.0; // n<=z/2
long double suminv_ab2=0.0; // n> z/2

long double suminv_ab3=0.0; // n> z/3 and odd

// medium primes sum

long double suminv_med=0.0;

// stacks used by backtracking

Long a[KBD+1]; // alk] = exponent of prime(k)

Long Pk[KBD+1]; //Pk[k] = prime(k) alk]

Long Sk[KBD+1]; // Sk[k] = sum(prime(k), j=0..k)

Long sigma[KBD+1]; // sigmal[k] = prod(Sk[jl, j=1.

// string to Long converter
Long atoll(char *str)

{

Long zval;

zval = 0;
for (; *str; str++)
{
zval = 10*zval + (*str - ’0’);
}

return zval;
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4.3 The hybrid algorithm

void traite(int k, Long n)

{
long double invn=1.0/n;
Sk[k] += Pk[k];
sigmalk] = sigmalk-1]*Sk[k];

long double sigmak=sigmal[k];

if (sigmak >= 2 * n) // This n is nondeficient
{
// small primes method
if (n*x2<=N)
suminv_abl+=invn;
else
suminv_ab2+=invn;
if(a[1]1==0 && n*3>N)

suminv_ab3+=invn;

// medium primes method
if (nxY<=N)
{

suminv_med+=invn*Fy;
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4.3 The hybrid algorithm

else

{

suminv_med+=invn*Flower ((prime [k]*n>N) ?k:piupper

((Long)ceil (N*invn)));// max of k and pi(z/n).

}

else // This n is deficient

{

suminv_nab+=invn;

// double large prime method

long double al = ((long double)sigmak)/(2.0 * n-sigmak);

long double a2 = al+sqrt(al*(1.0+al));
long double p2lower=0.0;

long double p2upper=0.0;

if (sigmak>b2*n)

{
Long 1i;
Long piual=piupper(al);
Long pilal=pilower(al);
Long piua2=piupper(a2);
Long pila2=pilower(a2);

if (K<piua2)

128



4.3 The hybrid algorithm

p2lower+=Fy-Fupper (pila2);

p2upper+=Fy-Flower (piua2)+Aupper(al, pila2);

for(i=((K+1<pilal)“?pilal:K+1);

i<=((KBD<piua2)?KBD:piua2) ;i++)

long double pl=(long double)primelower (i) ;

long double pu=(long double)primeupper (i) ;

Long hnpl=(Long)floor (sigmak* (pu+1.0)
/(2.0*n*pu-sigmak* (pu+1.0)));

if (hnp1>0)

{

p2lower -= Fupper(pilower (hnpl))/(pl-1.0);

for(i=((K+1<piual)?piual:K+1);

i<=((KBD<pila2)?KBD:pila2);i++)

long double pl=(long double)primelower (i) ;
long double pu=(long double)primeupper (i) ;
Long hnpl=(Long)floor (sigmak* (pu+1.0)

/(2.0*n*pu-sigmak* (pu+1.0)));
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4.3 The hybrid algorithm

Long hnpu=(Long)floor(sigmak*(pl+1.0)
/(2.0%n*pl-sigmak*(pl+1.0)));

if (hnpu>0)

{
p2upper-=(Flower (piupper (hnpu))

-Aupper (hnpu,pilower (hnpl)))/(pu-1.0);

if (KBD<piua2)
{
long double p=(long double) PBD;
if (KBD<pilal)
p2lower-=Fupper (pila2)* (pinvupper (a2)
-pinvlower(al)+1.0/al-1.0/a2);
else
p2lower-=Fupper (pila2)* (pinvupper (a2)

-sumpinv [KBD]+1.0/p-1.0/a2);

p2upper-=(Flower (piua2)-Aupper(1.0/(2.0*n/sigmak*p/
(p+1.0)-1.0) ,pilower(sigmak*(1.0+1.0/a2)/(2.0*n
-sigmak*(1.0+1.0/a2)))))*(pinvlower (a2)-sumpinv

[KBD])*(1.0+1.0/((longdouble)p-1.0));
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4.3 The hybrid algorithm

+
p2lowersum+=p2lower*invn;

p2uppersum+=p2upper*invn;

if (sigmak*(1.0+1.0/prime[K+1])*(1.0+1.0/prime [K+2])<2*n)
{

p2uppersum+=Aupper (al,K) *invn;

// Backtracking computes all p_K-smooth integers up to n (except 1)
void back(int k, Long n) {

Long nextn;

nextn = n;

while (nextn <= N)

{

if (alk])

traite(k,nextn); // For computing bounds for A(2)

}
if ((k < K) and (nextn*prime[k+1] <= N))

//Take care of overflow
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4.3 The hybrid algorithm

{
alk+1]=0;
Pk[k+1] = 1;
Sk[k+1] = 1;
sigma[k+1] = sigmalk];
back (k+1,nextn) ;

}

alkl]++;

nextn = nextn * prime[k];

Pk[k] *= primel[k];

void initprimes()

{
// identify primes up to PBD:
long int rootn;

rootn=(long int)floor(sqrt(PBD));

int intervall[rootn+1];

long int 1i;

interval [0]=0;

interval[1]=0;
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4.3 The hybrid algorithm

for( i=2; i<=rootn; i++)
{

intervall[i]l=1;

long int ptr=2;

while(ptr<=floor(sqrt(rootn)))

{

for (i=ptr*ptr; i<=rootn; i=i+ptr)

{

interval[i]=0;
+
ptr++;

while(interval [ptr]==0) ptr++;

long int pcount=0;

long int count;

for(i=0; i<=rootn; i++)

{

pcount+=intervall[i];
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4.3 The hybrid algorithm

// £ill prime[], pill, and F[] arrays:
prime[0]=1;

pi[0]=0;

pil1]=0;

F[0]=1.0;

i=1;
long int j;

for(j=2; j<=rootm; j++)

{
piljl=pilj-1]+interval[jl;
if (interval[jl==1)
{
prime[i]=j;
F[i]=F[i-1]*(prime[i]-1.0)/prime[i];
i++;
}
}

// sieve intervals of length rootn

long int m, r;
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m=PBD/rootn;

r=PBD-m*rootn;

count = pcount; // count the first interval

for(i=1; i<m;i++)

{
interval [0]=0;
for(j=1; j<=rootn; j++)
{

intervall[j]=1;

for(j=1;j<=pcount;j++)

{
for(ptr=prime[j]-((i*rootn)’prime[j]) ;ptr<=rootn;
ptr+=prime[j])
{
interval [ptr]=0;
}
}

for(j=0; j<=rootn; j++)
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4.3 The hybrid algorithm

{
pilrootn*i+jl=pil[rootn*i+j-1]+intervallj];
if (interval[jl==1)
{
count++;
prime [count]=rootn*i+j;
F[count]=F [count-1]*(prime [count]-1.0)/prime[count];
}
}

// last interval

interval[0]=0;

for(j=1; j<=r; j++)

{
interval[j]=1;
}
for(j=r+1; j<=rootn; j++)
{
interval[j]=0;
}

for(j=1;j<=pcount;j++)
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{
for(ptr=prime[j]-((m*rootn)’prime[j]) ;ptr<=r;ptr+=primel[j])
{
interval [ptr]=0;
}
}

for(j=0; j<=r; j++)

{
pilrootn*i+j]=pil[rootn*i+j-1]+intervall[j];
if (interval[jl==1)
{
count++;
prime [count]=rootn*i+j;
Flcount]=F [count-1]*(prime[count]-1.0)/prime[count];
}
}

// calculate sum of reciprocal primes

sumpinv[0]=0.0;

for(j=1;j<=KBD; j++)
{
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sumpinv[j]=sumpinv[j-1]+1.0/prime[j];

// calculate reduced moments

L[1] [KBD]=1.0706484444688249785754788801621464049769¢e-9;
L[2] [KBD]=1.2125360381904000849879330046048765336008e-17;
L[3] [KBD]=1.8416871110871013722627356991238754238205e-25;

L[4] [KBD]=3.29594356911638569265174956894439063553e-33;

for (j=KBD-1;j>=0;j--)
{
long double pl=1.0*prime[j+1];
long double p2=plx*pl;
long double p3=p2*pl;
long double p4=p3x*pl;
long double pb5=p4x*pl;
long double plO=pb*pb;
long double 11=1.0/(p2-1.0);
long double 12=(1.0+p2)/(p2-1.0)/(p3-1.0);
long double 122=(2.0%p3+p2-1.0)/(p3-1.0)/(p2-1.0);
long double 121=p2/(p3-1.0)/(p1-1.0);
long double 13=(p4-p3+3.0%p2-p1+1.0)/(p1-1.0)/(p3-1.0)

/(p4-1.0);
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long double 133=(3.0*p3*p3+pd-p3-p1+1.0)/(p1-1.0)/(p3-1.0)
/(p4-1.0);

long double 132=p3x(p3+p2+1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0);

long double 131=p2*(p3+p1+1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0);

long double 14=(pd*pld-p3*pd+4.0*p2*pa+p5+2.0*p4+p3+4.0*p2-pl+1)
/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

long double 144=(4.0%pl0*pl+2.0%pl0+2.0*p5*pld+pd*pd+3.0*pd*p3
-2.0%p3*p3+p5+p3+p1-1.0)/(p1-1.0)/(p3-1.0)/(p4-1.0)
/(p5-1.0);

long double 143=pd* (pd*p3+2.0*p3*p3+p5+2.0%p4+3.0*p3+2.0%p2+1.0)
/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

long double 142=p3*(p3*p3+p4+2.0*p3+p2+1.0)/(p1-1.0)/(p3-1.0)
/ (p3-p2+p1-1.0)/(p5-1.0);

long double 141=p2*(p4*p3+2.0%p5+3.0*p4+2.0*p3+p2+2.0*%pl+1.0)

/(p1-1.0)/(p3-1.0)/(p4-1.0)/(p5-1.0);

L[11[j1=L[1] [j+11+11+L[1] [j+1]*11;

L[2] [j1=L[2] [j+1]1+12+L[2] [j+1]1*122+2.0*L[1] [j+1]*121;

L[31[j1=L[3] [j+1]1+13+L[3] [j+1]*133+3.0«L[2] [j+1]%132
+3.0%L[1] [j+1]%131;

L[4]1[j1=L[4] [j+11+14+L[4] [j+1]1%144+4.0%L[3] [j+1]1%143

+6.0%L[2] [j+1]%142+4 . 0xL[1] [j+1]*141;
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// initialize AKarr, the asymptotic bound

long double c=3.

222;

for(i=1;i<=KBD;i++)

{
long double
long double
long double
long double
long double

long double

tmax=floor (log((long double)PBD/prime[i])/log(c));
fact=1.0;

sum=0.0;

logct=log(pow(c,tmax+1.0)*prime[i]) ;
logctml=log(pow(c,tmax)*prime[i]);

ubd=log(1.0+log(c)/logctml) + 1.0/10.0/logct/logct

+ 4.0/15.0/1logct/logct/logect + 1.0/10.0/logctml/logctml

+ 4.0/15.0/1logctml/logctml/logectml;

for(j=1;j<=tmax; j++)

{

factx=j;

sum+=(pow ((long double)sumpinv[pi[(Long)floor (pow(c,

(long double) j)*prime[i])]]-sumpinv[pi[(Long)pow(c,

(long double) j-1)*prime[i]]], (long double) j)-pow(

(long double)ubd, (long double)j))/fact;

}

sum+=exp (ubd)-1.0;

AKarr[i]=F[i]*sum;
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Long pilower (long double x) {
if (x<=PBD) return pil[(Long)floor(x)];
else if(x<= 50096009)
return pil[PBD];
else
{
long double lx=log(x);

return (Long) floor(x/lxx(1.0+1.0/1x+1.8/1x/1x));

Long piupper(long double x) {
if (x<=PBD) return pil[(Long)floor(x)];
else

{

long double lx=log(x);

return (Long) ceil(x/1x*(1.0+1.0/1x+2.51/1x/1x));

Long primelower (Long k) {
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if (k<=KBD) return prime [k];
else

{
long double lk=log(k);

return (Long)floor (k*(1lk+log(lk)-1.0+(log(1lk)-2.25)/1k));

Long primeupper(Long k) {
if (k<=KBD) return prime[k];
else

{
long double lk=log(k);

return (Long)ceil (k*(1k+log(lk)-1.0+(log(1lk)-1.8)/1k));

long double pinvupper(long double x) {
if (x<=PBD)

{

return sumpinv[pi[(Long)floor(x)]];

}
else // Dusart upper bound valid for x>=10372

{
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long double lx=log(x);
return log(lx) + 0.261497212847643 + (1.0/10.0 + 4.0/15.0/1x)

/1x/1x;

long double pinvlower(long double x) {
if (x<=PBD)
{

return sumpinv[pi[(Long)floor(x)]];

}
else // Dusart lower bound valid for x>1
{
long double lx=log(x);
return log(lx) + 0.261497212847643 - (1.0/10.0 + 4.0/15.0/1x)
/1x/1x;
}

long double Flower(Long k)// k=index of prime p_k. {
if (k<=KBD) // use array F
return F[k];
else // k> KBD, so use Dusart

{
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long double lpk=log(primeupper(k));

return eneggam*(1.0-0.2/1pk/1pk)/1lpk;

long double Fupper(Long k)// k=index of prime p_k. {
if (k<=KBD) // use array F
return F[k];
else if(k<=3035782) // F[KBD] is smaller than Dusart for k<=3033524,

// but we use a lower bound for pk, so k<=3035782.

{
return F[KBD];
}
else // k> 3035782, so Dusart is smaller
{
long double lpk=log(primelower(k));
return eneggam*(1.0+0.2/1pk/1pk)/1pk;
}

long double Alower(long double u_linv, Long k) // u_linv=1/(u-1),
k=index of prime p_k. {

if (u_1inv<=0) // Aupper=Fupper

{
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4.3 The hybrid algorithm

return Fupper (k) ;
}
long double bound=Flower (k)-Fupper(pilower (u_1inv));
if (bound<=0)
{
return O;

¥

return bound;

long double Aupper(long double u_linv, Long k)// u_linv=1/(u-1),
k=index of prime p_k. {
if (k<=KBD)
{
long double min = 1.0;

long double u_Oinv=u_linv;

long double y = L[1] [k]*u_Oinv;
if (y < min)
min = y;
u_Oinv*=u_1linv;
y = L[2] [k]*u_Oinv;
if (y < min)

min = y;
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4.3 The hybrid algorithm

u_Oinv*=u_linv;
y = L[3] [k]*u_Oinv;
if (y < min)
min = y;

u_Oinv*=u_linv;
y = L[4] [k]*u_Oinv;
if (y < min)

min = y;
Long piflu=pilower(u_1inv);

if (piflu<=KBD && k<=piflu)

{
y=F [k]-F [piflu] +AKarr [piflu];
if (y<min*F[k])
return y;
}

return F[k]*min;
}
else // use an upper bound for the first moment
{
if (k<3388888) // if pi(k)<56855672, then L[1] [KBD] is better
return Fupper(k)*L[1] [KBD]*u_1inv;
else
{

long double y=k*(log(k)+log(log(k))-1+(log(log(k))-2.25)
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4.3 The hybrid algorithm

/log(k));
long double fi=1./log(y)+1.5524/(log(y)*log(y));

return Fupper(k)*(f1/y*(+1+£1/y)+0.0067/ (y*y*y))*u_linv;

void init(int argc, charx* argv([]) {
if(argc > 1) N = atoll(argv([1]);
if(argc > 2) K = atoll(argv[2]);
cout << "K = " << K << endl;
cout << "N = " << N << endl;
cout << "KBD = " << KBD << endl;
sigma[0] = 1;

Pk [1]

1

Sk[1]

1;
sigmal[1] = 1;

cout << setprecision(20);
initprimes();
Y = prime[K];

Fy = F[X];

// bounds for large prime method
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4.3 The hybrid algorithm

b1=2.0%(1.0-1.0/(Y+1.0));

b2=b1*(1.0-1.0/(Y+1.0));

int main(int argc, char* argv[]) {

init(argc,argv);

int i;

back(1,1);

cout << "p2uppersum = " << p2uppersum << endl;

cout << "p2lowersum = " << p2lowersum << endl;

cout << "suminv_abl = " << suminv_abl << endl;

cout << "suminv_ab2 = " << suminv_ab2 << endl;

cout << "suminv_ab3 = " << suminv_ab3 << endl;

cout << "suminv_med = " << suminv_med << endl;

cout << "2p + small lower = " << p2lowersum+(suminv_abl +
p p

2.0*suminv_ab2+ 0.5*suminv_ab3)*F[K] << endl;
cout << "2p + medium lower = " << p2lowersum+suminv_med << endl;

cout << "2p upper = " << 1.0-F[K]*suminv_nab + p2uppersum << endl;
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Chapter 5

The a-pnd method

When we introduced the ideas of Behrend in Section 2.3, we noted that Behrend’s
lower bound idea used a certain set of nondeficient numbers. We will introduce this
set, called the primitive nondeficient numbers, along with their a-generalizations, the
a-primitive nondeficient numbers, in the next section. Just as Deléglise was able to
create both an upper and lower bound algorithm from Behrend’s upper bound idea,
we will be able to extend Behrend’s lower bound method into a method to calculate
both upper and lower bounds for the density of a-abundant numbers. We call this

the a-pnd method.

5.1 Primitive nondeficient numbers

We will introduce the idea of primitive non-deficient numbers by considering the

sequence of non-deficient numbers:
6,12, 18,20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, . . ..
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5.1 Primitive nondeficient numbers

It may be noticed that many of these are multiples of 6, the first perfect number.
In fact, every multiple of 6 up to 96 appears. Does this trend continue? If so, then
a number of other questions naturally arise. First, are all multiples of each perfect
number on this list? Second, are there numbers on this list that are not multiples of
perfect numbers? We can answer this one right away. We have an example in the
fourth entry in the list above: Note that 20 is not perfect, and no divisor of 20 is
perfect. But the first few multiples of 20 are also on the list, again leading us to ask
the same question for this number: Are all multiples of 20 on this list?

The answers to these questions leads naturally to the consideration of a particular
subset of non-deficient numbers, which we will call primitive. This subset will be use-
ful in giving us an alternative method of estimating the density of abundant numbers.
We will now show that the line of inquiry concerning multiples of non-deficient num-
bers is a productive one. The following lemma was essentially proven using Lemma

2.1 in the discussion following that lemma, but we will prove it directly below.

Lemma 5.1. Let n and m be natural numbers. In particular
h(nm) > h(n),

with equality only when m = 1.

Proof. The case when m = 1 is clear. When m # 1, we use that

TOED I

d|n
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5.1 Primitive nondeficient numbers

so that

&I»—‘

h(nm) = Z

dlnm

1
-+ — > h(
2D Gt o > k.
dn
This proves the lemma. O]

Thus, we see that not only are proper multiples of each perfect number abundant,
it is also the case in general that proper multiples of any non-deficient number is
abundant.

Now let us return to the list of non-deficients. Since we now know that all of the

multiples of 6 occur, let us remove these and see what is left:
20, 28,40, 56, 70, 80, 88, 100, . . ..

Of the remaining numbers, many are multiples of the first number, 20. Removing
these, we are left with

28,56,70,88, ... .

If we continue this process, we find that all non-deficient numbers up to 100 are
multiples of 6, 20, 28, 70, or 88. It may be realized by now that we are using a
procedure analogous to the Sieve of Eratosthenes, but on a different set. In general,
we will use the term primitive for such a set of numbers which correspond to the

primes in this way.

Definition 5.2. If . is a subset of the natural numbers, let .#(.#) denote the set
M(S) ={sn:se€ .S neN}

We call # () the set of multiples of . and say that a set . generates set 7 if
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5.1 Primitive nondeficient numbers

T = M)

There is a unique minimal generating set for .7 which can be found by taking
the intersection of all . such that .7 = #(). To see this, it suffices to show
that if 7 = # () for i = 1,2, then I = (%1 N .%). One inclusion is easy,
since A (S N S) C H#(S1) = 7. To see the opposite inclusion, suppose t € 7.
Let s; be the smallest member s € .%; such that ms = ¢, and let m;s; = t. Since
sy € A C M(S), there are m and s € S such that ms = s;. Thus s; > s.
However, by definition of s, since t = mys; = (mym)s, we have that s > s5, so we
conclude that s; > so. However, this argument is symmetric in switching subscripts
1 and 2, so sy > s1. We conclude that s; = sy € .1 N .. Thus t € (S N.S).

By analogy with the primes, we will use the adjective primitive when referring to
either the unique minimal generating set or its members. In view of Lemma 5.1, we
have that a primitive non-deficient number (pnd) is a number n such that h(n) > 2,
while for each proper divisor d of n, h(d) < 2. Analogously, for any real number «
a primitive a-non-deficient number (a-pnd) is a number n such that h(n) > « while
for each proper divisor d, h(d) < a. The set of pnd’s and a-pnd’s will be denoted P

and P, respectively. Thus, we have the following proposition.

Proposition 5.3. The sets &/’ and <7, are generated by P and P,, respectively, so
that
"= (P) and A, = M (P,).

Remark 5.4. In the literature primitive non-deficient numbers are often called primi-
tive abundant numbers, and are abbreviated pan. This definition becomes the natural
one provided an abundant number n is redefined so that h(n) > 2, as is done in [3, 5].

However, we will not be following these conventions.
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5.2 A density lower bound method

5.2 A density lower bound method

In Behrend’s doctoral dissertation, a lower bound for the lower density of abundant
numbers is found by calculating the density of the multiple set of a finite subset of the
primitive non-deficient numbers. (We say lower density since the density of abundant
numbers was not yet known to exist.) For instance, at one point Behrend requires

the density of the multiple set of four pnd’s:
d.#({2-3,2*-5,2%-7,2-5-7}).

To find this density, he partitions the multiple set into disjoint subsets in the following
way. Define A¢ to be the set of numbers that are multiples an of a such that (n, c) = 1.

Then he observes that the density of such a set has the simple form

C)
C

IS

By choosing appropriate values of ¢ corresponding to each pnd a such that the sets
A¢ are disjoint, their individual densities can be evaluated. Then summing these
densities gives us the total density. We seek to generalize this method so that, given
an arbitrary set of primitive non-deficient numbers, we can identify for each pnd a an
appropriate ¢ such that > d A¢ gives the density of the multiples of these pnd’s.
Suppose we begin naively by considering consecutive pnd’s. For the pair of pnd’s
6 and 20, we observe that their multiples coincide at the multiples of [6,20], so we

write the combined density of multiples of 6 and 20 as

Lot 1 11/ 20\ 1 1 ,_ (6,20
6 20 [6,200 6 20 [6,20] ) 6 20 6 '

153



5.2 A density lower bound method

Indeed, for any two numbers a; and ay we have

d(CLlN U GQN) = dalN + dagN — d[(ll, CZQ]N

11 1 1.1 (uwa
ai Qg [Gl,az] a az a1z
1 1 1 1 1
——+—(1— (al’a2)) ——+—(1——),
a1 a2 a1 a1 a2 C1,2
where ¢ 5 = a;/(a1,as). We can think of 1 — -1~ as a correction factor that takes

c1,2

into account the overlap that the multiples of asN have with a;N.
Unfortunately, for three terms the general correction factor is not as clean. In
fact, the additional term which is the density of the set azN \ (a;N U ayN) can be

written

1 1 1 1
d(asN\ (e;NUayN)) = — — — +
( ’ \( ' ? )) as [al,as] [az,as] [a1,a27&3]

_ 1 (ayas)  (ap,a3) N (la1, as), a3)
as aas 203 [al, az]a:«;

_ L 1_ (a1,a3) (a2, a3) n (a1, a3), (a2, a3)](a1, az)
as a as a1ag

1 (1 (ar,a3)  (az,as) (al,as)(GQ,ag)(a1>a2))

- — (1= — + )
ag ai Qg ayas((ay, as), (az, as))

Now suppose that we have

(a1, a2) = ((a1, as), (az,a3)). (5.1)

Then we arrive at a simpler expression for the correction factor, since

| (@0)  (az,03) | (ar,03)(aza5) _ (1_ M) (1_M).

a1 a2 a10a9 a a2
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It is easy to see that the condition (5.1) required for this simplification is equivalent

to the condition

(mfflas)’ (afag)> =L (5.2)

The following proposition generalizes the observations made above to any number

of terms. For convenience, we use the following notation.

Definition 5.5. For sequence (a;)%_; we write .#;(ay,as,...,a;) for the set of mul-

tiples of a; that are not multiples of any a;, 7 < j. Thus,
Mi(ar,ag, ... a;) = a;N\ U a;N.
i<j
We note that this allows us to partition .# ({a1, as, . .., ax}) into the disjoint union

of subsets .#;(a1,as,...,ax), j < k.

Proposition 5.6. Let A = (aj)?zl be a sequence of natural numbers and for each j
construct the sequence C; = (c;;))—) whose elements are defined by ¢;; = a;/(ai, a;).
In addition suppose that for each j the elements of C; are pairwise coprime. Then

the density of M ;(A) is given by

so that

d.a(A) = i ljl (1 - i) | (5.3)
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Proof. We first write

a (U N> iy (U oL (N\U N>)
—d <U aiN> +d <ajN\UaiN> .

i=1 i=1
Thus, to prove the proposition, it suffices to show that
J Jj—1 j—1 1 j—1 1
d (UaiN) —d (UaZN> —d <ajN\ UaZN> =—1]] (1 - —) R
a . C .
i=1 i=1 i=1 3 irj

We prove this by induction on j. When j = 1, (*) becomes the equation d a;N = 1/ay,
which is true. Suppose the relation (x) is true for j = k — 1. Then by the induction
hypothesis the density of the set S of multiples of a; not divisible by a; for 1 < k —2

18

dS:d(akN\UaiN> :i]ﬁ<1— ! )

i=1 S
We want to subtract the density of multiples of a;_; in S from the density of S. Thus,

we want the density of the set

k-2 ¢ k—2
T:=a,1NNS=a,1NNnaNN (U aiN> = [agk_1,ax]N'\ U a;N.

i=1 i=1

3 !/ J— / P / : /
Now we write a;_, := |ay, ar—1] and ¢, = a;/(a;, a),_;). Since a | aj_,, we have
, - : R , , B :
Cir_1 | cik- This in turn gives that (ci, x, i, k) = 1 implies (¢}, 4, ¢, ;1) = 1. This

allows us to use the induction hypothesis on 7' so that we have

k—2 k—2
1 1 1 1
d7=——J] 1~ = [T(1- :
[ak,ak_l] H ( 627,?1) AkCk—1,k ( C;,k1)

=1
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5.2 A density lower bound method

We will show that ¢;;, = c&k_l for each i < k — 2. Then

ar- LTI 1),

AkCh—1k ;4 Cik

so that the difference d S — d T’ becomes

1 k—2 1 k—1
- 1— S
& k:) QECr—1.k H < C; k) Qg H < Czk>

which proves our result.

a—kH<1‘

Thus, it remains to show that ¢; , = c;k_l for each i < k—2. We will now use our

condition that for each i < k — 2,

(C ks Ck k:) = ( i @k—1 > =1
; k) = = 1.
. (aiaak)7 (ak—bak)

;. Then the coprimality condition

For p prime, define e;
translates to

min{e; — min{e;, ex}, 1 — min{ex_1,ex}} = 0.

We now consider each of the cases where either the first or second entry is smaller.
If the first entry is smaller than the second, then the first entry must be 0 so
min{e;, e} = e; and e; < e. If the second entry is smaller than the first, then

we have analogously that e;_; < eg. Observe that in either of these cases, we have

min{e;, max{ey, ex_1}} = min{e;, e},
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which translates to

(a;, [ak, ax—1]) = (@i, ax).

Then

! _ a; _ Q; — i
Wil (a;, [ag, ap—1])  (ai, ax) b

as claimed. n

Remark 5.7. In the event that the sequence contains repeated terms, say a; = q;

for ¢ < j, then the result nevertheless applies since in this case

sol—1/¢;; =0and d.#;(ai,...,a;) =0 so the jth term does not contribute to the
density sum. In any case, in what follows we will only be concerned with sequences

having distinct terms.

Definition 5.8. We call ¢; ; in Proposition 5.6 the cofactor of a; for a;, and denote

the sequence of cofactors of a; by Cj.

For our purposes it will be useful to have a weaker version of the coprimality

condition on C;. To take the place of C;, we define

Cii={ceCj:deCjd#c = dtc}.

Note that whereas C; is a sequence, C’]’» is defined as a set since we will not be
concerned with the order of its members nor with any multiplicity which may occur
in the terms of the sequence C;. The set C’; will be called the reduced cofactor set for

a;. We can now state the following theorem.
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5.2 A density lower bound method

Theorem 5.9. Let (a;)%_, be a sequence of natural numbers and let (C4)5_, be the
corresponding sequence of reduced cofactor sets. Suppose in addition that for each j

the elements of C’; are pairwise coprime. Then

and

M ({a;}5 éa_l] 1T (1 —~ %) . (5.5)

ceC’.

<.

Proof. We repeat the argument proving Theorem 5.6 where in place of (%) we now

show that
k k—1 k—1 1 1
d N| - N| = : . ). !
(U a]N> d (U a]N) d <akN\ U a]N> - II (1 C) (+)
J=1 J=1 J=1 ceqy,

We again use induction on k. As before, when k = 1 we are done, so assume (x') is
true for £ — 1 elements. Then calling S the set of multiples of a;, not divisible by a;

for 7 < k — 2, we have

where C}/ is the reduced cofactor set for aj with the sequence (ay,...,ar_2). The set

T’ of multiples of a,_; in S’ is

T := lap_1, ai]N\ U a;N
i—1
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having density

1 1 1 1
A7’ = ——— (1_-):— (1——),
[ak, ag—1] H c AkCr—1k H c

111 "
ceCy, ceCy]

where C}" is the reduced cofactor set for [ax—_1, ax] with the sequence (ay, ..., ax_2).

We need to show that d7” = 0 if and only if there is some ¢ such that ¢; 5 | cx—1-

Thus, we write

Cik \ Ck—1k la;, ag] = Ci kA | Ck—1,kQ) = Ap—1, i)
> a; | [ag_1, ax
= (a;, |ak—1,a;]) = a;
a;

= —— =1,
(ai, [ak—hak])

so 1 appears as an element of C}" and dI' = 0. On the other hand, if 1 does not
appear in C}', then ¢;j { ¢x_1 for any ¢ < k — 1, so cx_1 1 € C}.

Finally, we must show that in the latter case C} = C}’. But we have already
shown in the previous proof that the cofactor sets are the same before reduction.

Thus, they must be the same after reduction as well. We conclude that the difference

ds" —dT" is

1 1 1 1 1 1
- 1— =) - ——— 1-2)=— 1—2>),
G- I O-0) -5 I

"
ceCy ceCy] e

as asserted. O
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5.3 The “significance” of prime powers

5.3 The “significance” of prime powers

We seek to identify a sequence of pnd’s that satisfies the conditions of Theorem 5.9.
That an arbitrary sequence will not work can be seen in the case of the following

sequence of pnd’s:

This gives the numbers 10 and 14 as cofactors for 6. However, 10 and 14 are not
relatively prime and neither is divisible by the other.

We will determine an ordering that depends on how much a prime factor of a
number n contributes to its abundance, in the following sense. Let h(n) = o(n)/n.
Writing n = [ pj’, where the primes p; are distinct and each e; > 1, we have by the
multiplicativity of h that h(n) = [[h(p;"). Now comparing h(n) to h(n/p;) we see

that they differ by the factor

hn) _ h(/p)br) =1 pr (=)
Pln/p) — hin/p)h(E)  Ppi— 1) P -1
eitl
pi 1 pi—1 1
LA pi(pit = 1) pio(pi ™)
o(py’) =1

We can now see that the effect that removing a prime factor p from n has on h(n)
depends on o(p°), p°||n, with larger values o(p°) having a smaller effect. We will now
define an ordering on prime powers that reflects this effect. However, it may be the
case that more than one prime power have the same sigma value. For instance, 2*
and 52 both have a o-value of 31. In such a case we will want to distinguish the two

prime powers. We thus make the following definition:
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5.4 An ordering of a-pnd’s

Definition 5.10. Suppose there are k prime powers p;* with equal o-values and with

p1 < -+ < pr. We define the significance of the prime power pi’, sig(p;’), to be

1

S

Thus, for two prime powers p° and ¢/, if o(p¢) < o(q’) then sig(p®) > sig(q’), and
in the event that o(p®) = o(¢/) and p < ¢, we have sig(p®) > sig(q’).
We extend the definition of significance to all natural numbers as follows. For

n > 1, we take sig(n) = min{sig(p®) : p¢ | n}. Finally, if n = 1, we take sig(1) = 1.

We now order the prime powers p° by decreasing significance and construct primi-
tive non-deficient numbers whose prime power factors have bounded significance. The

sequence P = (p5*)2, of prime powers ordered by significance thus begins
2,3,5,2% 7,11, 3%, 13, 23, 17, 19, 23, 29, 2%, 5%, 31, 37, 3%, 41, 43, 47, 53, 7*,.. ..

Remark 5.11. Note that the ordering of prime powers by significance differs from
the natural ordering in that prime powers p© for e > 1 show up later than they would
otherwise. Note also with the notation for prime powers ordered by significance,
P = (p;")72,, pi may be equal to p; for i # j. In fact, each prime p is equal to p; for

infinitely many ’s.

5.4 An ordering of a-pnd’s

We are now in a position to construct a sequence of a-pnd’s that satisfies the con-

ditions of Theorem 5.9. We will order the primitive non-deficient numbers using the
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5.4 An ordering of a-pnd’s

prime power sequence P in the following manner.

For each term p;* in P, we consider the set of a-pnd’s which have p{" as the least
significant prime power factor, which we will call the p;*-block. The sequence of blocks
found in this way contains all a-pnd’s since any a-pnd has a unique least significant
prime power factor, and such a a-pnd will be found in the corresponding block. We
will then say that PP is ordered by significance. If we wish, we could further order the
members of each block, say using lexicographic ordering by significance, but in fact
we will not be concerned with how elements are ordered within each block.

To demonstrate this ordering, we will construct a list of the first few blocks for
a = 2. The list would begin by choosing p{* = 2'. However, since 2 is deficient
and there are no prime powers preceding it, there are no pnd’s corresponding to this
choice. Hence the 2'-block is empty. We now move on to the next term, p3? = 3.
The number 3 by itself is deficient, but 3 - 2 is a pnd, so we have found the first
one on our list. Since we have exhausted our possibilities with 3!, this completes the
31-block. The next term of P is 5!, and we construct pnds that have 5 as a factor
which also contain 2 or 3. Since we want to avoid multiples of 6, we need only check
that neither 10 nor 15 are abundant. Next we use 22. We do not consider 2 since 2
divides 22, and we need not consider 3 since we have already counted 6. Thus, we
check that 22 - 5 is abundant, and that it is primitive since removing either a 5 or
a 2 makes the number deficient. In fact, due to our ordering we only need to check
that removing a 2 makes the number deficient. The next term, 7, gives us two pnd’s,
2.5-7 and 22 -7. Thus, there are two elements in the 7-block. Proceeding in this

manner, we generate a list of blocks of pnd’s

3, {2-3}, {3, {5-2%, {2-5-7,2%2.7}, {}, {5-7-11-3%, . ...
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5.4 An ordering of a-pnd’s

To state the next theorem, we introduce the notation

Ly = lem{p]" : i < k}. (5.6)

Theorem 5.12. The ordering of a-pnd’s by significance satisfies the conditions of
Theorem 5.9. In fact, the reduced cofactor set for each a-pnd a consists only of

primes, and is given explicitly for a in block p}* as

C'={p:p| Ly/a}.

Proof. 1t suffices to show that the primes p in the cofactor set C' for a in block p*
are exactly those satisfying p | Lx/a, and that each composite ¢ € C' is divisible by
some prime p € C.

First suppose p | Lx/a. Then p # py and ap/py, is abundant, since if p¢||a, then
p“™ has greater significance than pj*. Thus, ap/py has an a-pnd divisor a’ appearing

before a, and

Thus, all the primes claimed are in C”.

Conversely, say a’ appears before a in the sequence and p | a’/(a’,a). Then for
some e > 0, p°||a’ and p° t a. But p® | L. Thus, p | Lg/a.

So, we have shown that each prime dividing Ly /a is in C' and that each prime

factor of each ¢ € C divides Lg/a. Thus, C" is the set of primes dividing Ly /a.
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5.4 An ordering of a-pnd’s

By this theorem, we now have a compact way of writing the product in (5.5):

I1 (1 - %) - ‘p(;), a=]]e (5.7)

ceC ceC

Then we can extract the relevant information for each a-pnd «a; in the single number

¢;. We define the sequence

C= (Ci>$i1

to be the cofactor sequence for the sequence of pnd’s P ordered by significance, and
in general let C, be the cofactor sequence for the sequence of a-pnd’s ordered by

significance. Thus, we have the following corollary.

Corollary 5.13. Let P; be any subsequence of P ordered by significance such that if

(&2

p© is a term of Py, then so is p! for 1 < f < e. Let P be the sequence of a-pnd’s
formed using Py and the procedure described in this section, with Py = (a;)I_; ordered
by significance. Let (¢;)i_, be the cofactor sequence for Py. Then the density of the

set of multiples of Py is given by

d.(P,) = Z ola) 1 _ Z O(Ly/a:)

C; a;
i=1 ¢ ¢ i=1

where k is the index of the block in which a; belongs.

This sum allows us to calculate a lower bound for the density of abundant numbers
and generalizes Behrend’s calculation for a large class of subsets of a-pnd’s. We will
call this the a-pnd method, or simply the pnd method when o = 2.

We conclude this section with a table of the first few pnd’s ordered by significance,

the block they belong to, their cofactor sequence, their reduced cofactor, and the
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5.4 An ordering of a-pnd’s

corresponding reduced cofactor set.

a block | cofactor sequence | Li/a | reduced cofactor set
2-3 3 1
5-22 22 (3) 3 {3}
2:5-7 7 (3,2) 32 {3,2}
22.7 7 (3,5,5) 3-5 {3,5}
5-7-11-3%| 32 (2,22,2,2%) 22 {2}
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5.5 Asymptotics of the pnd method when o = 2

5.5 Asymptotics of the pnd method when a =2

Let us denote by P[y] the set of pnd’s in P consisting of pnd’s from p®-blocks with
o(p®) < y. By the pnd method we can calculate the density d .Z (P[y]). We now ask
for a bound on the error d &7 — d .# (P[y]). A simple bound can be found by taking
the reciprocal sum of the elements of the set P\ P[y]. We first show that this set is
contained in P\ P(y), so that

o (5.8)

is an upper bound. The containment can be seen by the chain of implications
o) >y = P >y/2 = B>y = a>y,

where the first implication is from the observation that for any prime power p® we
have h(p®) < 2, and the final implication uses that p® is a proper divisor of a. In fact,

with a little more work we may improve the bound on a.

Lemma 5.14. Let a be a pnd. If p¢||a and sig(a) = sig(p®), where o(p®) >y, then

py Py —1)
9 9 '

a>max{—

Independent of p, we have
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5.5 Asymptotics of the pnd method when o = 2

Finally, independent of e, we have

Proof. We will factor the pnd a in two different ways to determine two bounds on a.

First, write a = a/p. Since a is a pnd,

2> h(d') > Qh(p—e_l) =2 (—a<pe_1)pe> =2 (w) g 1

h(p®) peto(pe) o(p°) o(p)/2

We now use that a rational number in an interval (0,1/n] must have denominator
d with d > n. Thus, writing 2 — h(a’) as the fraction (24’ — o(d’))/a’, we have
a > o(p®)/2 > y/2 so a > py/2. To remove the dependence on p, we determine a
bound on p. Since h(p®) < p/(p — 1) < 2, we have p® > o(p°)/2 > y/2. We conclude

that

1+1/e
a=ap> (%) .

We now factor a as a = a”p°. Then we have
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5.5 Asymptotics of the pnd method when o = 2

Next we use that p® = o(p°) — o(p®~!) so that

o(p) —a(p*") _ Ph(d")
o(pe1) 2 o(p)

Finally, we use o(p°) = po(p°~') + 1 so the inequalities become

(p—1o(p")+1 . Ph(a")
o(pet) 2 o(p®)

Thus, we have that

1 ph(a”) 1
o) T 2 v 1)20(19@)

which means that the fraction ph(a”)/2 = po(a”)/2a” has denominator 2a” bounded

by
) —1 -1
2@// > O_(pe—l) — (T(p ) > Yy .
p p

e

Thus, a = a”p® > p*~1y/2. We remove the dependence on p using p¢ > o (p°)/2 > y/2

so that

o e Y1 <y>ell_y—1<y)2—i
frnd . >—. = - =z il .
a=app 2 \2 y \2

The third assertion of the lemma follows from the second by separately considering

the cases e =1 and e > 2. O

Although this result is not significant asymptotically, it can be used to advantage
for computational purposes.
For purposes of asymptotics we will return to the simpler bound a > y for the

remainder of this section. We now show that as y — oo, the error bound (5.8) goes
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5.5 Asymptotics of the pnd method when o = 2

to zero. By partial summation we can write

L L

a€P,a>y

From [12], we have the upper bound

1
IP(n)| <mnexp (—2—5\/lognlog log n>

for n larger than some ng(e). Since

1 > [P@)]
Z aﬁ/y 12 dt

a€P.a>y

e 1
< et
y te?s\/logtloglogt

logy 2 1 1/2
=0 —_— ——(1 log 1
(loglogy) b ( 25( ogyloglogy) )

for sufficiently large y, we have that the error does indeed go to zero. We have thus

proved the following theorem and corollary.

Theorem 5.15. The error d &/ —d .# (P[y]) behaves as

d.of —d.a(Ply]) = O (( log y )1/2 exp (_iaogylog 1ogy>1/2)>

loglog y 25

for sufficiently large y.

Corollary 5.16. The density of abundant numbers can be expressed as the infinite

sum

o ‘P(Ci) 1
do = %—C -
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where the a; are pnd’s and ¢; = Ly/a;, as defined in (5.7), and where Ly, is as defined

in (5.6).

5.6 Special values of «

Recall that the Deléglise method uses a different infinite sum expression for d &7 which
can be extended to determine in general the density of a-nondeficient numbers. We
have shown that the error term goes to zero uniformly in «. In contrast, we cannot
extend the error estimate for the pnd method to the case for a-pnd’s. In fact, to
prove Theorem 5.15 we have used the result in [12] which makes special use of the
value v = 2. In contrast, Erdés in [14] presents an example of o for which the sum of
reciprocals of a-pnd’s does not converge. We will begin by supplying a proof of this

fact, which is only stated in the Erdds paper.

Proposition 5.17. Let py,po, ... be an infinite sequence of primes satisfying pri1 >

exp(exp(p?)). Define a to be
o 1 ..
T ) - )
ol Dk k—oo  p1p2--- Pk
Then the sum of reciprocals of a-pnd’s does not converge.

Proof. First we check that this infinite product converges. We note that since exp(z) >

x, we also have exp(exp(x)) > exp(z) > x, which we use to show

pr > exp(exp(pi_1)) > pi_;-
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Then

>

1 Pk

establishing convergence. Finally,
ﬁ(1+1)<ep ilog(l—l—l) < exp il < exp(¢(2)),
— X —_— X —_— X
Bl Pk 1 Pk v Pk

so the infinite product also converges.
Next we verify that the numbers n = pips - - - pgp, for primes pr < p < piy1, are

all a-pnd’s. To see that n is a-nondeficient, note that

h(n) = H(H;)-(H%),

so h(n) > « follows if

First we establish a lower bound for the left side of this inequality. Since p < ppi1—2,
1

1+
1+121+ 1 :<1+ 1 ) Pk+11—2 '
p Prv1 — 2 Prk+1 1+

Pk+1

The final factor is

—9 2 2
Pr+1(Pr1 )+pk+1:1 >1+5——>1+—5—.
(D1 + 1) (P41 — 2) (P41 + 1) (g1 — 2) Pis1 —1 Prta

We continue the estimate by using the definition of py.o to write

1+ 2 > 1 2
piﬂ loglog prya
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Thus, we see that we have reduced our problem to establishing

2 s 1
1+ — > H (1 + —> .
loglogpeia = 570, pi

Now we turn our attention to the right side of this inequality and determine an upper

bound that is easy to compare to the left side. We first use the bound

= 1 - 1 =1
H <1+—):exp(21og(1+—>)<exp<z—).
i=k+2 pi i=k+2 pi imhio Pi

For the final infinite sum, we iterate the inequality established earlier of p, > p? | to
get

21'
Pk+i > Di—1-

Thus,

o0

SR ENE S S

)
i=k+2 Di Pr+2 i—1 Pk42 Prk+2

and since exp(z) < 1+ 2z for 0 <z < 1,

= 1 2 4
exp Z— <exp( )<1—|— :
g Pi Dk+2 Dk+2

It remains to demonstrate that

log log x < g

for x > 1. This can be seen via the inequalities ¢ > x > logz for x > 0 and by

noting that r — log z has minimum value 1 for x > 0. Then

e* >z >logx+1>logx+log2 = log2x,
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so taking logs and replacing x by /2 gives us what we wanted to show.
Since we have identified a subset of the primitive a-nondeficient numbers, it re-
mains to show that the reciprocal sum of these numbers diverges. We first factor the

sum according to

=1 1
—Z_

k=1 P Pr+1 Pr<P<Pk-+1

and bound the inner sum. Using

1
Z — =loglogz + O(1) and loglogz <

p<z

IA
no| 8,

N8

for x > 1, along with the definition of py.1, we get

1
> = =loglogpr — loglog py, + O(1)

Pr<P<Pk-+1

1
> pi — 5]9% +O(1)
1

= 5]92 + O(l)

Next, we prove by induction that pr > pips---pr_1. For k = 2, this is clear by
definition. Assuming the validity of case k — 1, we have pips -+ - pr_1 < pi_, < D, as

claimed. We use this result to show divergence of our sum:

K K
1 1 1 1
DT —22—2~(5pi+0<1>)
k=1 P1 Pk+1 PE<p<Pk4+1 p k=1 pk
1
=-K+ O(1).
2
Since the sum diverges as K — 0o, we have proven our result. Il
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5.7 Liouville numbers

A number 9§ is called a Liouville number if for each k there exists a rational number

ag /by, with ay, by € Z, such that

1
by

Qg

pp—
O<’ b

This condition implies that ¢ is irrational, and moreover that it is transcendental. In
[14], Erdés stated that the o defined in Proposition 5.17 is a Liouville number, and
in general that if for some value « the primitive a-abundant numbers have divergent

reciprocal sum, then o must be Liouville. We first provide a proof of the first claim.
Proposition 5.18. The number o defined in Proposition 5.17 is Liouville.

Proof. Define
a i 1 i
k
— = 14+—1, by, = -
by, E ( pi) g Hp
Then it suffices to prove that the sequence of rational numbers ay /by, approximates

a better than 1/bf for all k. Thus, we need to prove that

B0 <

i=1 pi
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We will proceed by bounding above the left side of this inequality:

= 1 =1
H(1+—)—1<exp<2—>—1
i=k+1 Di imh1 Pi

32 1
21 k—i—lp
231 .31 .3 — 1
2pre1 2Pre2 2 57D

31 3 =1
: O
2 Pt 2pk+2 2 . Pi
3 1 3 1 3 1
2 Prya 2pk+1 2pk+1
2

< .
Prk+1

Next we prove by induction that

. k
(2 HZ%) < Pht1,

i=1

so that

2 2
<

Prer (20"

From the definition for py we have 2p; < ps. Now assuming the case k — 1, and using

the result p; > Hf:_f pi, we have

k-1 \ Pl ok k k
(2 sz> : Hpi pi < (2 H]%) < 2Mppt?.
i=1 i=1 i=1

Thus, it remains to show

2
k, k+2 ePk
27pp Tt <e T,
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5.7 Liouville numbers

since the expression on the right bounds py,; below by definition. Since z+1 < x?/2

for z > 3 (and noting that expexp4 = 5 x 10 so p;, > 3), we have
1, 1,2
pk+2<1+§pk<€2 k
and thus

log log(Qkpl,Z’LQ) < log(px + 2) + loglog 2py. < 2log(pr + 2) < pi.

Thus,
ﬁ <1 + 1) —-1< 2 < 2 < !
i=k+1 pi Prer (2b0)° by, Hle (1 T pl>
for £ > 1. This proves that « is Liouville. O]

Let N,(n) denote the number of primitive a-abundant numbers in [1,n]. Erdés
in [14] states that if « is not a Liouville number, then it can be shown using a proof

similar to that found in [12] that

n

Na(n) < eca(lognloglogn)1/2

for some positive constant ¢,. Note that if « is non-Liouville, there must be some

positive real number s such that

for any a,b € Z such that a # a/b. Note also that if the inequality is satisfied for

some Kk = Ko, then any value of k greater than kg will satisfy the inequality as well.
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Thus we may assume that k£ > 2.

We will prove the Erdds statement in terms of such an exponent . In fact we will
establish explicit constants which is useful in an implementation of the upper bound a-
pnd calculation for o non-Liouville. The proof of Erdés in [12] has subsequently been
refined by Aleksandar Ivi¢ [24] and Michael Avidon [2]. However, these refinements
rely on the use of the counting function for y-smooth numbers n < z, ¥(z,y), which
is difficult to make explicit. We have chosen instead to follow the earlier Erdos proof.

In the proof we will be factoring numbers n according to the power of their prime

factors, as follows.

Definition 5.19. Let the squarefree part of n be the product of the prime factors
of n that occur to the first power, and the squarefull part the product of the prime
factors that occur to higher powers. For instance, the squarefree part of 2 -3 - 5% - 73

is 2 - 3 and the squarefull part 52 - 73.

Theorem 5.20. Let P, (x) denote the set of a-pnd’s in [1,x]. Suppose « is a non-

Liouville number and k > 2 is an integer such that for any a,b € Z, o # a/b,

o515
a —_— — .
bl = b
Then
T
P, <4 '
[Po(z)] < e%(logﬂﬁ10g1<>g"’3)1/2
where

= 0.632769033 . . .,

= /o - 17.3860345 . . .,
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and x 18 large enough that

x > exp(13100)

and
Vl1og x loglog x

36 log 5’(%(/32)) + 3log(n log log w)’

where

5
_ o — 2.0671....
1= ¢ 3log log 223092871)2

Proof. In what follows, we will use ¢; to denote constants local to each lemma, and

C; to denote global constants. We define the functions

E, = Ey(z) := (log zloglog )"/

and

Ey = Fy(x) Ei(x) logz \'?
= r = ——- = —_—
2 2 loglog = log log = ’

so with this notation our goal will be to prove that

T

G
etz Bl

|Po(z)] <6

for some constants 0, 5 > 0.

We first show that we can restrict our attention to numbers satisfying both of the

following conditions for some constants 0 < C < %:

1 eclEl ,

NG

(A) if n <z, the squarefull part of n is less than

(B) if n < x, the greatest prime factor of n is greater than e“2F,

We first study the numbers not satisfying property (A). We will use the explicit
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bounds for the number of squarefull numbers up to x given in Golomb [19].

Lemma 5.21. Let U(z) denote the number of squarefull n < x. Then

CVz =3z <U(z) < CVa,

_<@B/2)
where C = Ol 2.173....

Corollary 5.22. The reciprocal sum of the squarefull numbers n > x is

where

Proof. From Lemma 5.21 we have U(x) = C\/x + Eo(z) where
—3vV/x < Ey(x) <0.
Then by partial summation we have
Z 1 /OO dU (t)
no " t
n>x
v, [~U®)
— —=dt
i /1, 2

n squarefull
Vioooow Vi

= > Eo(t)
+ / W i
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where
E(x) = _on(a:) —I—/I E;(t) dt.
Then since
0< —Eof) < %
and
e _3/:0755%& < /:O Bl <,
we have
—gm < E(x) < %7
as asserted. O

Lemma 5.23. Let the function f be nondecreasing on x > xq for some bound x.

The number of n < x with squarefull part not less than f(x) is at most

(v 37)
+ - 5 | .
Proof. The number of integers n up to x with squarefull part r not less than f(z) is

bounded by

> oo
N

r squarefull

so by Corollary 5.22, we have the upper bound

C 3
+ 5
(w f(@) {’/f(:v)2> '
proving our assertion. O
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Thus, we have that the number of n < x not satisfying condition (A) is bounded

by
<C\4/a o2 )
C C
eTlEl eQTlEl
We have
Cya _ 3
SN 29 gy
e e 3
when
C
e B > %alé,

namely when

6 3 12
v/1og xloglogx > alog 5/5.

We conclude that the number of n < x not satisfying condition (A) is bounded by

o T 1\/_
20/« o for x such that Vlog zloglog x > 5 log
ez

To prove the result in connection with condition (B), we will use the following

lemmas.

Lemma 5.24. Let a,b > 0. Then for x > e, the minimum value of

(log )
(loglog )b

18

and it occurs at
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Proof. We consider the derivative

d ( (logz)* \ _ (logz)*! . b
dx \ (loglogz)® )  x(loglogz)b loglogz )’

and note that the function has a minimum and value as given. O

Now we will prove the statement in connection with condition (B).

Lemma 5.25. Let ¢y, co,c3 > 0 be constants with

Cl<\/é—1,

1
61+\/502<\/_—§,
C
\/E—% §61+0363/202

where C'5 = 1.15993801, and
2(ve—a)

032—1+2\/502.

The number of integers n < x with squarefull part less than e“**' and greatest prime

factor not greater than e2* is less than

eC5 log log -\ ©™
x _—
CgEQ

for x > 286.

Proof. We divide the numbers under consideration into two classes. In the first class

we place integers for which the number of different prime factors is less than or equal

183



5.7 Liouville numbers

to ¢35 for some c3 > 0. Since these also have squarefull part not greater than et

the number of these at most x is less than or equal to the largest such number. An

upper bound for such a number is

X
. eclEl — 263 logz+ciEr

Ca ey loga—aiEr”
We note that we will need coc3 < 1.

We now consider the second class consisting of integers not greater than x where
the number of different prime factors is greater than c3Es. Since such integers are all
multiples of integers containing at least s = |c3Fs] distinct prime factors, we can let
ai,as,...,a; be the integers at most  which contain exactly s distinct prime factors

and bound the number of integers in the second class by
t
>
iz
By the multinomial theorem we can write

t S
1 1 1
>i<h(xs)
i=1 ’ p<z p
We explicitly bound this sum using the following lemmas.

To bound the reciprocal sum of primes we use the bound of Rosser and Schoenfeld

[29]
1

2log®

1
Z— <loglogz + B +

p<z

. x> 286,
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where
1 1
B:7+Z (log (1——) —I——) = 0.2614972. ...
> b p

For convenience we replace this bound by C5loglog x, where Cj is a constant chosen

to satisfy
1
Csloglogx > loglogx + B + T
2log” x
Since C3 must be greater than
B 1
= 1.15993800.. .,

1+ +
loglog 286  2log? 286 log log 286

we choose (5 = 1.15993801. Then

t
1 Csloglog x)®
Z_<(3 i!g)

a.
i=1

for x > 286. To bound s!, we will use Inequality (3.10). Using these bounds and that

s = |c3FEsy ], we continue with the bound

c3 o
Xt: 1 _ 1 [ eCyloglog z\ " 1 {eCs [(loglogz)? '
L~ q;, e csEy e\ ¢ log x ’

We now show that for appropriately chosen constants,

c3FE2
1 < <eC’3 (loglog x)3>

6(1—6263) logz—c1E1 — cs IOgLE
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so that the second bound is larger than the first. We begin by taking logs, yielding

C,

3 1
1By — (1 — coc3) logx < c3Fy (log < 3) + 5 log log log =z — 3 log log x) :

C3

Dividing both sides by E5 gives

C 3
c1loglogz — (1 — cac3) By < c3log (i—;) + 503 log log log z — %log log x.

Thus, we need the inequality

C 3
(Cl + 62—3) loglogx < (1 — coc3) By + c3log <6—3) + 563 log loglog x
C3

to be satisfied. Assuming c3log(eCs/c3) > 0, it will be enough to require that the
inequality

<01 + %) loglogx < (1 — cac3) B (5.9)

be satisfied. Note that the assumption is satisfied if 0 < ¢3 < eC3. The inequality

2c1 + c3 < log =
2 —2coc3 — \/ logloga’

and as the right side has minimum value /e, we need

(5.9) can be written

2¢1 + c3 <
2 — 2C2C3 o

2(ve— 1)

< — "
e Yy
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Note that this bound is smaller than the earlier bound ¢3 < 1/¢5. Note also that
we must have ¢; < /e. We have thus found that the two classes of numbers under

consideration are bounded by

2

(Comgieey™ -

csbo

provided we choose

0 < ¢3 < min {eC’g,

ey

and

Cl<\/g.

We further impose the condition

so that

C
Ve — 62—3 < ¢ 4 Cse®cy.

Since eC3 = 3.1530... and 2\/e = 3.297..., the expression on the left side of the

inequality is positive. With this condition, our bounds on c3 become

2(ve —a)

O0<c3 < 1

+ 2\/562 ’

Since a larger choice of ¢z gives a smaller bound (5.10), we choose

2(ve —a)

= 1+2\/ECQ
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Next, we find conditions satisfying c¢3 > 0. Solving for

2(ve —a)

——F>0
1+2\/ECQ ’

we find
1
61+\/ECQ < \/5—5.

We now check when the two inequalities

C
Je — % < ¢ + Cse*2c (5.11)
and
1
c1+vecy < e — 3 (5.12)

have solutions ¢y, co. Solving for ¢, we have

603

1
\/_—7—0363/2C2§C1<\/E—§—\/EC2.

For this to be a nonempty interval, we need

C 1
\/E_%_C363/202<\/E_§_\/602.

Solving for ¢z, we have c3 > 1/(2/e).

Solving the pair of inequalities (5.11) and (5.12) for ¢y, we have

Vit

1

e—5—¢

Lo, Yema—a
0363/2 \/g
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this time we need
C 1
\/5—673—01<\/E—§—Cl
0363/2 \/E ’

which means ¢; < /e, which we already have. In fact, we must also consider our new

bound, ¢ > 1/(2y/e). Thus, we must have

Solving for ¢1, we now have ¢; < y/e—1. Likewise this bound on ¢; must be compatible

with the lower bound for ¢;, so

C
Vi- &g < i

Thus
1 — €Cs

-2
0363/2 < Ca.

However, we already have 0 < cs, so this does not give an additional constraint. This

establishes the lemma.

We now compare the bounds considered thus far.

Lemma 5.26. The number of n < x not satisfying properties (A) and (B) is bounded

by

T
4

1aC—2—

e b1
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where C7 > 0 and x satisfy the following contraints: Let Cy, Cy be constants with

2(ve—-C1)

YT 14260,

such that Cy > C1,

In addition

C.
\/E — % S Cl + 63/20203

and

1
C1 +VeCy < /e — 5
Let x be sufficiently large that

log log x S 4Cy

logloglogz — Cy — Cy’

6 3%
1 logl > —1
V1og xloglog x > o los =5
and x > exp exp((eCs/Cy)?), where Cy = 1.15993801 as defined in Lemma 5.25.

Proof. Since 2{/aC > 1, we apply Lemma 5.25 directly and then use the bound

xXr xr
4
2VaC—— > — -
e2 =1 e2 1
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Thus we first consider when the inequality

1 - eCs log log 2\ “***
Er T CuE,

is satisfied. We proceed as in Lemma 5.25 and begin by taking logs. Then we have

C Cs 3 1
—71E1 > CyFEs (log 60—43 + 3 log log log z — 3 log log x) )

Next we divide by CyE5 to get

C Cs 3 1
—2—(;410g10gx > log%j + §logloglogx — éloglogx.

Rearranging so that all the terms are positive, we have

1
3 (1 — %) loglog z > log%czf’ + gloglog log x,

provided C; < Cj. To simplify this bound, we replace the expression log(eC3/Cy) by

(1/2)loglog log x, which we may do when

T > exXpexp ((6—03>2>
= c, .

Thus, we are left to satisfy the simpler inequality

1
—(1—- ﬁ loglog z > 2logloglog x.
2 Cy

Thus, we have proved the lemma. Il
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5.7 Liouville numbers

Before continuing, we state the following lemmas which we will use in the sequel.

Lemma 5.27. For natural numbers n # 2 or 6, every m < n has at most logn

distinct prime factors.

Proof. We first check when w(m) < logm. If w(m) = 0, then m = 1, which has
log1 = 0 distinct prime factors. If w(m) = 1, then all m > e has logm > 1 so 2
is the only exception in this case. If w(m) > 2, we have m > 6 - 5*(™~2_ This last

inequality holds if and only if

logm > log6 + (w(m) — 2)log5.

Solving for w(m), we have

w(m) log 771”;g—510g6 oy
Thus, we find w(m) < logm when
M + 2 < logm.
log 5
Solving for logm gives
logm > 2 l(l)fg55—_l(ig 67

SO0 we want

m > (25/6)Y1°e5-D = 10.398 . ...

For m < 10 we check that the only values m such that w(m) > logm is when

m = 2,6. O
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In order to bound the size of a, we will make use of an explicit version of the

following standard result which can be found, for instance, as Theorem 323 in [22].

Lemma 5.28. Let N = H?:ﬂ)i = 223092870. For natural numbers n > N =

exp(19.22...), we have h(n) < Cgloglogn, where

b}
Ce =¢€’ =2.06715....
sTCT 2(loglog(N +1))?

Proof. We first observe that

h(n) = # < ﬁ.

Then by the Rosser and Schoenfeld [29] bound

< e’ loglogn +
p(n)

2loglogn
for n > N, we have for some constant Cjy that

n

p(n)

< Cgloglogn.
To determine Cg, we set

e’ loglogn + < Cgloglogn
n

2loglog

and solve for Cy. Since n > N, we may take

5
_ o —2.06715....
Co =¥ SloglogN 1)~ 200715
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5.7 Liouville numbers

This gives us our result. [

It follows from this lemma that we need only consider a such that 1 < a <
Cg loglog n.

Thus far our argument has not depended on our numbers being primitive a-
nondeficient. We now show that we can further restrict the set of a-pnd’s left to

consider so that, in addition to (A) and (B), they satisfy the following:

(C) The squarefree part of each such a-pnd has a divisor d with \/ae%%_cl Ey<d<

C
1 f2E1
—=€ 2k
\/& ’

(D) If a < x is an a-pnd satisfying (A) and (B), then

a<h(a) <a+ Tl

To prove the statement regarding (C) we will use the following lemma.

Lemma 5.29. Let a > 1 and C; < Cy/(4k). An a-pnd a with 6 < a < x satisfying

(A) and (B) has a divisor d such that ewB < d < \}e%El when x is sufficiently

large that

3 C
Eloga + loglogx < f\/logxloglogx.

Proof. Let a be an a-pnd with 6 < a < z satisfying (A) and (B). If a contains a
prime factor in the desired interval we are done, so assume not and write a = uwv,

where u contains only prime factors not greater than \/Lae 1 and v contains only

1

prime factors greater than \/—ae%El. Note that by (B), v # 1. Now we show that

by

for x sufficiently large, u > eT2 B, Suppose not. Since h(u) < «, we have by the
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definition of s that

1
oz—h(u):a—M > —.
U (I
Then
h < 1
(u) < a— e — i
Further,

h(v):H(H—%),

plv

since by (A) the prime factors of v occur only to the first power. Hence by Lemma

5.27, for x > 6
log z
1
h(v) < (1+ \C/Qa > <exp(%).
ezt ez
Consequently,

< exp (loga + log (1 —

1
< aexp (— el
aeTQEl

The final line above is no greater than o when

Valogz < 1
C. — C )
ez e b

that is, when z is sufficiently large that

C
o ?logx < ed b,
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5.7 Liouville numbers

For such 2 we have a contradiction to a being nondeficient, hence u > ex 1

Now we factor u into prime powers so that u = pi'p5*---pér. From (A), pi’ <
. < . .
\/LaeClEl if e; > 1, while p{’ < \/Lae?%El if e, = 1. Since C; < Cy/(4k), we have
pi < e for all i.

Consider the numbers
€1 €1 ,.€2 €1 ,,62 e
Pis P1 Dy ooy DDy D

. C .
Since u > e ¥t | there is some A such that

Co
e1 . €2 ex —= e1 €9 EX+1
PEPS -y < e < pitpgt o ply

C.
Since pM < \/LaeTfEl, it follows that

e1. € CEA+1 1 2E1
Y

P < € 2K
P1 Do Pry1 \/a

so we have found the desired divisor. O

Now we can show that (C) holds. By (A), the squarefull part of the a-pnd is

less than iaeClEl and so any divisor satisfying the results of Lemma 5.29 must have
¢ C
squarefree part between \/ae(ﬁfcl)El and \/iaeTgEl.

Next we show that (D) holds. Since a is an a-pnd, o < h(a). Let p be the greatest

prime factor of the a-pnd a. Comparing (A) and (B), and since C; < Cs, we see that
1
h(a) = h (9) (1 + —) .
p p
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5.7 Liouville numbers

Since a is an a-pnd, h(a/p) < «, and so h(a) < a 4+ a/p. Then again by (B),

h(a) <Oé+m,

proving (D).
Finally, we prove that the number r of a-pnd’s not greater than z satisfying

conditions (A), (B), (C), and (D) is less than

1 T

ﬁ @(%_Cl)El
when z is sufficiently large that it satisfies the bounds of Lemma 5.29. Say they are

ai,as,...,a.. From (C), the squarefree part of each a; has a divisor d; such that

Cy C.
\/a@(4n C1)Ex < d; < e Br Therefore,

67

3

i 1 T
i \/ae(%_cl)El‘

S

L

We now show that

so that the number of integers a; is the same as the number of integers a;/d; so is less

Ca

than \/Lax/e(ﬂ_cl)&.

Suppose to the contrary that

Then dil 7é diQ, and
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Then

Since the d; are squarefree,

so we reindex if necessary so that

Now

(o}
g

(dil)diz
(di2)di1

and h(d;,) < a, so

O'(diz) < Oédz'w

h(dil)

and so the denominator of is less than ad;, d;,.

h(diy)
Hence
h<dll> 1 o
h<dl2> " ad;, d;, * o 6%E1 + eC2E1
while from (D), we see that
h(a;,) - o+ /e P 1 |
h<ai2) « eC2El

This contradicts that the two sides are equal, proving our final bound.

Comparing our two bounds

T 1 T
4 aC d —_
Vo e B o a  (F-Ci)E
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we observe that we may choose

2 Oy Gy
01_3 4K 6K

It remains to check that the conditions of Lemma 5.25 are satisfied for some choice

of C5. We find for any value of k > 2 that any value of (5 such that

_ e _
001388 — VO~ 2 VeT3 _gesor..
g—f‘\/é

Using this value of Cs, we determine Cjy:

o Vet (e Y

2
1
6+26

= 1.06833684 ... — 0'0683328464- g

> 1.03416843.

We now determine a bound on x satisfying each of the bounds in Lemmas 5.26

and 5.29. The bound
2
T > exp exp 6—03
= S

is satisfied when x > exp(10890).
For the bound

log log x S 4Cy
logloglogz — Cy — C}’
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5.7 Liouville numbers

we use the upper bound C; < C5/12 when k > 2, and the lower bound C; >

1.03416843. This gives the bound

log1
0808 491491299
log log log x

By Lemma 5.24, the function
log log x
log log log x

is increases as © > exp(exp(e)) increases, with a minimum value of e. With z =

exp(13100), we have

log1
_08798% 4914952 ..
log log log x

Thus, the inequality is satisfied when z > exp(13100).

To bound

3 C
Elogoz +loglogz < f\/logxloglogx,

we use Lemma 5.28 which gives the inequality
log a < log C + log log log x,

along with the bound

Cs < loglog x

when = > exp(exp(Cs)) = exp(7.90...).

Next, we bound

3logloglog x 4 loglog x < %\/logxloglog x,
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5.7 Liouville numbers

As we have observed, elogloglogx < loglogx for z > exp(exp(e)), so we need

3 C:
<— + 1) loglogx < f\/logxloglog:v,
e

which simplifies to

log x 4 (3
> —(-+1).
loglogz — Cs \ e
This bound is satisfied when = > exp(1300).

Finally, we address the bound

6 3 12
v/Iogxloglogx > — log \/5'

4 C

Using C7 = C5/(6k) and Lemma 5.28, we have that x must be large enough to satisfy

< Csv/log xloglog x
K .
~ 36log & + 3log(Csloglog x)

Thus, we have proven the theorem. O

This theorem allows us to prove the convergence of the sum

o oe) 1
Z Ci ‘a_i

=1

for any non-Liouville o, using the same proof as for the case o = 2. This gives us the

following corollary.

Corollary 5.30. Let {a;}52, denote the sequence of a-pnd’s for a non-Liouville, and
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let {c;}22, be the corresponding cofactor sequence. The infinite sum

— ¢c;) 1
; C; .Cl_z'

converges and the value is equal to d <7,.

Remark 5.31. We can see that this sum is indeed infinite for any o > 1 by con-
structing a sequence of a-pnd’s. We first note that for sufficiently large primes, say
pi,t > ng, where p; denotes the ith prime, we have

1
hip)) =14+ — <a.

bi

Now there is some r such that

h(pipit1 - Digr—1) < @ < W(PiPig1 - Pigr)

by divergence of the sum of prime reciprocals. Then p;p;11 - pisr is an a-pnd. In

this way we can construct an a-pnd for each ¢ > ny.

It remains to consider the case where « is Liouville. We have already shown that
the sum of reciprocal a-pnd’s may not converge, so that we may not prove convergence
of the density sum expression in the same way as above. In [14], Erdés proves that

for any «,

Na(x)zo( ’ ) (5.13)

log x
as © — oo. In fact, with minor changes to the proof, (5.13) can be shown to hold

uniformly in a.

There are two places in the proof which appear to depend on the value of a.
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5.7 Liouville numbers

The first occurs in what he calls the first class, second subclass on p. 29. To remove
the a dependence, we observe that since h(n) = O(loglogx), we need only consider
a < cloglogx for some positive constant c. The second place occurs at the top of
p. 32. To remove the o dependence here, we need that the reciprocal sum of numbers
n such that h(n) = ¢ for some constant ¢, is bounded by some C' that does not

depend on ¢’. We will use a result of Wirsing [37].

Theorem 5.32. Let &, denote the set of a-perfect numbers. Then

| P, (z)| < xFsiose forx >3

for some ¢ > 0, where ¢ does not depend on c.

Using this result along with partial summation gives us that the reciprocal sum

is bounded by a universal constant C'. Thus, we arrive at the following lemma.

Lemma 5.33.

Nafw) =0 (1021;)

as x — oo uniformly in «.
In [11], Erdés also proves the following lemma.

Lemma 5.34. The number of integers n < x that do not satisfy all of the following

three conditions:
(a) if p° | n and e > 1, then p° < (log )™,
(b) the number of different prime factors of n is less than 10loglog z,

(c) the greatest prime factor of n is greater than p'/(20lglos)
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is o(x/(log x)?).
Using these tools, we are now in a position to extend the density sum relation of

Corollary 5.30 for « Liouville.

Theorem 5.35. Let o > 1 be real, let a; denote the ith a-pnd, and let ¢; = Ly/a;,

where Ly is defined in (5.6). Then

— o) 1

do, = 21 o

Proof. We partition the set of a-pnd’s a; < x into two classes. In the first class we

have those not satisfying all three conditions listed in Lemma 5.34. Since the number
of these is o(z/(log x)?), the reciprocal sum of these a-pnd’s converges.

For the second class consisting of those a-pnd’s that do satisfy the conditions

listed in Lemma 5.34, we argue as follows. First we note that

e(Lifai) 1 _o(Ly) a1 p(Ly) 1
Ly/a;  a; Ly o(a;) a Ly pla;)

Next we estimate ¢(Lg)/Ly and ¢(a;). By condition (c), we have that a;, and thus
also Ly, contains primes greater than x!'/(?0lglogz)  Then by definition of L; and

F(x),

90<Lk) < F(l_l/(QOIOglogoc)> -0 loglog x .
Ly log

By condition (b) we can bound ¢(n)/n by

p(n) e’
——= > F(pum)) > F(10loglognlogloglogn) ~ ——————,
n log log log n

where here p; denotes the ith prime.
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Thus, for large x, our a; satisfy

1 < e loglog log x
o(a;) — a; '

Putting our estimates together, we find that

o(Lifa) 1 _ f(x)

Ly, / Qa; Q; a;

where

f2) =0 (log log x log log log :c)

log x

Thus, the sum over a; that are a-pnd’s satisfying our conditions is

Z o(Li/ai) 1 0 Z log log a; log log log a; .
Li/a; a; a; log a;

a; <z a; <z

Since the number of a-pnd’s up to x is bounded by (5.13), the sum converges by
partial summation. Thus, we have shown convergence of the sum over a-pnd’s in the

second class. We conclude that the density expression holds. ]

5.8 Organization

We now introduce a method of organizing natural numbers in line with the notion of

significance. Consider a natural number n > 1 with the canonical factorization

n=]]w"

piln
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Taking h of both sides, we have

hin) = [T het) = H]‘l%-

piln piln j=1 h(pi
Now observe that
' h(p) 1
) h(p=1) o(p’) —1 G14)

Thus, h(n) is a product of factors having form 1+ 1/(o(p®) — 1), and the number of
such factors is the same as the number of prime factors p counted with multiplicity. If
the factors (5.14) are ordered according to decreasing significance of p’, this ordering
induces an ordering on the prime factors of n. We will call this the factorization
of n according to prime significance (as opposed to prime power significance). For

instance, if n = 2372, we would factor h(237%) as

h(2°7%) = I (2) (2) W (T)H (2°)1(7%),

since

sig(2) > sig(2?) > sig(7) > sig(2%) > sig(7?).

Then the induced ordering of prime factors is

2372 =92.2.7.2.7.

Suppose that n = p; - - - pg is ordered in this way. Write n; = p;...p;, so that in
particular n = ni. Then we have that h(n;) is an a-pnd for any « in the interval

(h(n;_1), h(n;)]. This implies that for any choice of « in [1, h(n)], there exists a well-
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defined divisor of n which is an a-pnd. We will call this the significant a-pnd of n,
and as usual we may drop the a when o = 2.

In the above example of 2372, we have intervals

{h(D)}, (h(1), h(2)], (A(2), h(27)], (h(2%), R(2°T)], (R(2°7), L(2°T)], (R(2°7), h(2°T%)],

namely
{1 (3] Gy 3] (2] (202 (7 5 )

Now we can read off the significant a-pnd for 2372 for any « in [1,h(237%)]. For

instance, the significant pnd of 2372 must be 227 since 2 falls in the interval (I,2] =

(R(22), h(2%7)]. If we instead wanted the significant ((2)-pnd, we note that ((2)
1.644--- € (1.5,1.75] = (h(2), h(2%)], so this would be 22.
The notion of significant a-pnd’s provides a more natural proof that the density

of a-abundants has the form

s o) 1

wanapnd @)@
for some function ¢(n). Namely, we partition the set <7, of a-nondeficient numbers
according to significant a-pnd of its members. Let <7/[a] be the set of a-nondeficient
numbers with a as their significant a-pnd. We can factor such a number n as n = ma.
The only primes which cannot divide m are those primes p such that either p { a and
sig(p) < sig(a), or p°|la and sig(p°™) < sig(a). If we extend the definition of the

symbol || so that ptn = p°||n, then we can combine the conditions on m so that
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p cannot divide m where p°|la and sig(p™) < sig(a). Thus,

c(a) = H p.

p°lla
sig(pT!) <sig(a)

Thus, we have that

and the theorem can be completed as before.

5.9 An a-pnd listing algorithm

Viewing natural numbers in terms of their prime significance factorization allows
us to describe an algorithm for finding all elements of the set P* of a-pnd’s with
significance bounded below by sig(p;*), where pi* is the kth term of the sequence P
of prime powers ordered by decreasing significance. We recall the notation L for the
lem of the first & terms of the sequence P. We now define L;; to be the lem of the
terms p;* for i = j+1,...,k of P. Thus, Lo = L. We will now describe an iterative
method that will eventually find all members of P~.

Fix a > 1. If @« = 1, then 1 is the only 1-pnd, so P; = {1} and we are done.
Otherwise @ > 1. Let n = 1 and ¢ = 1. The iterative step takes a number n such
that h(n) < o and i such that sig(n) = sig(p;’). Next we determine primes p which
may be multiplied to the current value of n so that pn is a potential a-pnd. These
are precisely the primes p that do not divide L;/n but do divide L; . For each such
prime p, if

a € (h(n), h(np)],
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then we include np in our list of a-pnd’s. Otherwise a > h(np), and we begin a new
iteration with the number np such that h(np) < «, and the index i’ of the prime
power py’ such that sig(np) = sig(p;”). Once the primes p are exhausted, we return
from the iteration. We will call this the a-pnd listing algorithm.

To illustrate, we will give the example of the tree found using the a-pnd listing
algorithm corresponding to o = 2, p” = 3%. Off of n = 1, we build branches for each
prime p | Ly = 22-32-5-7-11. If there are permissible primes, these primes continue

to branch off previous primes. We eventually arrive at the following tree.

11

The branch terminating with the boldface 3 denotes the discovery of the pnd 3-5-7-

11 - 3, while the other branches have terminated due to using up all allowed primes.
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5.9 An a-pnd listing algorithm

We complete the part of the tree marked by * below.

I

11

AN

11

Again we have some branches terminating in boldface indicating pnd’s, and other
branches that have run out of usable primes.

However, this tree has so many nodes that it would not be practical to use this in
a program, as it will take too long to traverse this tree. We can see this by estimating
the number of these as follows. We first determine an upper bound for the number
of nodes that must be traversed to find all of the specified a-pnd’s. This can be seen
by counting the number of nodes on a tree built in the following way: Begin with a
root labeled by the number 1. Append branches p; to the root for : = 1,..., k, where
k is the number of prime powers having significance bounded by sig(p;*). At each
node p;, append branches p;, j = ¢+ 1,..., k. We note that the number of nodes
is an upper bound for the number of a-pnd’s with significance bounded by sig(p}*).
Observe that the number of nodes in this tree is the same as the number of subsets
that can be formed from k objects, so there are 2% nodes. We bound k by m(2y),
where we set y = p;*. This can be seen by noting first that k is less than the number
of prime powers bounded by 2y. We have p¢ < 2y so e < log2y/ log p. Thus, we must
bound

log 2y Z

p<2y

By partial summation this is O(y/logy). Thus, the algorithm will eventually find all
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5.10 The a-pnd density algorithm

of the specified a-pnd’s by traversing at most 200/ 1°8¥) nodes.

5.10 The a-pnd density algorithm

Rather than using the tree in the previous section to identify the a-pnd’s, we have
the following alternate method. We will want to compute the prime factorization
of each a-pnd a; up to some bound z. To do this, we can use a modified sieve of
Eratosthenes to identify the prime factorizations of numbers up to z. This can be
done in O(zloglog z) steps. Simultaneously, we can keep track of the h value of each
number as well as the o value of the prime power factors. We check for a-abundancy
and discard the a-deficient numbers. Of the remaining numbers, we identify the
least significant prime power p¢ and calculate h(a/p) to determine primitivity. This
amounts to checking for the largest o value of prime power factors of n.

We also wish to compute the ¢; corresponding to a;. In fact, ¢; is very large in
general so we find the value ¢(¢;)/c; instead. In preparation, we set up an array
of values of ¢(Ly)/Lk, where the largest k needed is determined by determining the

largest k satisfying

o(pyr) = max{o(p®) : p® < z}.

This array has O(m(z)) entries. To find ¢(¢;)/¢;, we begin with ¢(Lg)/Lg, for the k
corresponding to a;. Then we adjust this value with the prime powers in a; that divide
Ly, to the highest power that L has. The appropriate prime powers p°||a; can be found
by checking that they satisfy sig(p°™) < sig(a;), where sig(a;) is the significance of the

least significant prime power dividing a;. Once ¢(¢;)/c; is determiend, it is multiplied
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5.10 The a-pnd density algorithm

to 1/a; and is added on to a running sum to determine

ple) (5.15)
i<z Ci;

The multiplications involved take O((log z)?) steps, as discussed in Subsection 3.3.1.
Thus the time spent calculating a lower bound for the density of a-abundant numbers
is

O (z(log z)*loglog 2) . (5.16)

This bound, along with the calculation for Theorem 5.15, allows us to determine
an upper bound for the running time of the a-pnd algorithm. We will now repeat
this argument more carefully by making everything explicit. In what follows, we will
refer to the upper bound estimate of the tail sum

Z (i)
C;a;
a; >z
as the error of the a-pnd algorithm, and the parameter z as the a-pnd bound. The

value of the error is what we must add to the truncated sum lower bound (5.15) to

arrive at an upper bound for the density of the a-abundants.

Theorem 5.36. For o non-Liouwville, the error of the a-pnd algorithm with a-pnd

bound z s bounded by

ZSO(Ci.) < Pl 126k ( log )1/2

) o bk
a;>z Gia ? ﬁ (log z log log 2)1/2 log log <

exp <—% (log z log log 2)1/2)
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5.10 The a-pnd density algorithm

where the sum is over a-pnd’s a; > z, ¢; = Ly/a;, where Ly, is defined in (5.6), P, is

the set of a-pnd’s, and 3,6, and k are defined in Theorem 5.20.

Proof. We use partial summation and Theorem 5.20.

Sl B, R,

z
a>z

< |]P)C“ Z>| + 5 & 1
= z P teﬁ/(lQlﬁ)(logtloglogt)l/g .

To bound the integral in the last line above, we use the integral

o " 1 dt B log =z 12 1
¢ . log IOg t tec(logtlog logt)1/2 o IOg log P ec(logzlog log z)1/2

+1/°O 1 1 1 dt
2 J, t(logtloglogt)'/? loglogt ) ecllogtloglogt)!/2”

From this, we have the bound

o dt < 1 log = 1/2 1
. tec(logtlog;logt)l/2 ~ ¢ 1Og 1ng 6c(logzloglogz)l/2

N 1 /°° dt
2¢(log zloglog z) J, tecllogtloglogt)!/2”

By solving this inequality for our desired integral, we have

> dt < 1 log 1/2 1
. tecllogtloglogt)!/2 — ‘ (1 _ 1 > log log 2 ec(log zloglog z)1/2
2¢(

log 2 log log 2)1/2

This gives us our result. O]

Now suppose we want the error to be within 10~¢ for some d. For o non-Liouville,
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5.10 The a-pnd density algorithm

we have by Theorem 5.36 that it suffices to have

- 126k logz 2 1
1079 < ,
- ﬁ N (logzlogl;og z)1/2 log log z eﬁ(logzlog log )1/

with bounds on z and k as stated in Theorem 5.36. In particular, we have the bounds

(log z log log 2)1/?

r <

~ 36log 5’(%(/32)) + 3log(nloglog z)

and z > exp(13100). We use these to bound

126k 1 126k

(log zloglog z)1/2 6log 3550+ 1 log(nlog(13100))

We will let
1
A= : =14128....
N 6log CB(%(/BQ))—F% log(nlog(13100))

It thus suffices to have

10-4 < 1260k [ logz \'? 1

- B log log z o1 (log 2 loglog )1/

Taking logs and multiplying by —1, we get

120k 1 log = 6] 1
log 10)d > —1 — -1 log 2 log 1 /2,
(log10)d > og( 5 ) 5 108 (loglogz) + 12/@( og zloglog 2)

Noting that 126\x/5 > 1 for all a > 1, it suffices to have

B 1
log 10)d > —=—(log = log 1 /2
(log10)d > m(ng oglog z)™/*,
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or

12(log 10)kd \ 2
zloglogz S 6(75 )

Since the running time ¢ is

O (z(log z)*loglog z) ,
for some constant ¢ we have

t < cz(log z)*loglog z.

We now use the bounds

12(log 10)/<¢d)2

log zloglog z < (
g

and

12(log 10)kd \ 2
zlogz — 6logz—l—loglogz < 6logzloglogz S 6(75 )

to arrive at the following result.

Theorem 5.37. For a non-Liouville, the a-pnd algorithm described above can deter-

mine the density of abundant numbers to d decimal digits in at most t time, where

fo e (12(10%10)/£d>2 (1200 y?

)

where ¢ is an absolute constant and 8 and k are defined in Theorem 5.20.

For a Liouville, we use Lemma 5.33. Again, we use partial summation to find the

following.
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5.10 The a-pnd density algorithm

Lemma 5.38. For o Liouville, the error bound for the a-pnd method with a-pnd

bound z s

Z o(c) 0 log log z loglog log =
Ga; log z ’

a; >z

where the sum is over a-pnd’s a; > z, ¢; = Ly /a;, and Ly, is defined in (5.6).

By this lemma, we see that for the error to be within 10™%, we must have
d > loglog z.
Then with the same time bound
t < cz(log z)*loglog z,

we find the following.

Theorem 5.39. For o Liouville, the a-pnd algorithm can determine the density of
abundant numbers to d decimal digits in at most t time, where
2d€ed

t < cde

Y

where ¢ is an absolute constant.

Thus we find that when « is Liouville, the time grows at worst double exponentially
with the number of desired digits, just as we found for the Deléglise algorithm. In
contrast, when « is non-Liouville, we have an improved bound of time growing at

worst single exponentially with the number of desired digits.
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5.11 A result of Shapiro

In [32], Harold Shapiro proves that if there are infinitely many a-p.n.d’s with & distinct

prime factors, then « can be expressed as

ola) b
a=—>"—, a,b) =1, b>1, 5.17
e (@) (517
and w(a)+w(b) < k. That these conditions are also sufficient was proven by Shapiro in
[33]. Using our theory of significance, we provide a streamlined proof of the sufficiency
of Shapiro’s theorem. In preparation, we build two tools which may be of independent

interest.

5.11.1 The capping off lemma

We first characterize when an a-deficient number @’ can be augmented by a prime

power p°¢ with sig(p®) < sig(a’) so that a’p® is an a-pnd.

Lemma 5.40 (The capping-off lemma). Given a number o' = p{*---p* with p*
having minimal significance in o', and a real a« > h(a'), a'p is an a-pnd with sig(p) <
sig(a') if and only if p is a prime in the interval

h(a’)

) —1 < —F.

In addition, for any a-deficient a’' there is at most one prime power p¢,e > 1, such

that (p,a’) =1, and a = d'p® is an a-pnd. In fact, the prime must lie in the interval

h(a) h(a)

—_— —F—— + 1.
a— h(a) <P=< a— h(a) -
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5.11 A result of Shapiro

If there is such a prime p, then the exponent e is

h(a')
10g<hmﬂfau:ﬂa) __1
log p

e= :
where [z denotes the ceiling of x.

For any a-pnd a there is a number a' such that for some prime power p° with

sig(p©) < sig(a’), a = a'p°.

Proof. Note that a number o’p is an a-pnd with sig(a’) > sig(p) if and only if h(a’p) >
a and o(p¥) < o(p). We show that the latter inequality is strict since it is not possible
for a prime p to have the same o value as a prime power distinct from p. For suppose
not and o(p) = o(¢°) for a prime power ¢°. If ¢ = p, then e > 1, but this means o(q°)

is strictly greater than o(p). Otherwise ¢ # p. But then
pHl=q+q¢ "+ g+,

which is absurd since, upon subtracting 1, the right side is divisible by ¢ while the

left is equal to p. Thus, we have o(p;*) < o(p). We now solve each of the inequalities

1
h(a") (1 + —> >a and  o(pf)<p+1
p

for p, yielding

h(a")

) —1 < —F—.

Suppose a = a'p® is an a-pnd with e > 1 and (p,a’) = 1. Since a is an a-pnd, we
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have
h(a'p*™) < a < h(a'p®).

Then
h(p") < —— < h(p°)
h(a’) — ’

and it is clear that at most one power e for a given prime p can satisfy the above
inequalities since for e = 2,3, ..., the intervals (h(p®~ '), h(p®)] partition the interval
(h(p),p/(p—1)). To see that two primes cannot have overlapping intervals, we write
the interval for p as (1+1/p,1+1/(p —1)). Thus, there is at most one prime power

p¢ that satisfies our conditions. Solving the inequalities

for p, we arrive at

Solving the inequalities

for e gives

ha') h(a')
log (h(a/)w(lfl/p)) Cces log (h(a/)w(l—l/p))
log p - log p '

The final statement can be seen by writing a = a'p;*, where sig(p;*) = sig(a).
Since we know that p;* exists, it can be found by one of the two methods of capping-

off, depending on whether e, = 1 or not. Il

Remark 5.41. Note that not all a-deficient numbers o’ have a prime p such that
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sig(a’) > sig(p) and a’p is an a-pnd. An interesting example is when o = 2 and we

choose a’ = 2". Then we must find a prime p such that
2n+1_2<p§2n+1_1’

namely a prime p = 2" — 1. A number M, := 2" — 1 is called a Mersenne number,
and if M, is prime, it is called a Mersenne prime. It is known that M,, is not prime
unless n is prime, so we cannot always find a prime p to “cap off” a’ = 2". In the
event that there is a prime p to cap off 2", the pnd 2"p is in fact a perfect number,
as proven by Euclid. The pair a = 2, @’ = 2™ also gives us an example of an ¢’ which

cannot be capped off by p°®, e > 1, since there is no prime p in the interval
2n+1 -1 <p< 2n+1

(as there is not even an integer in it).
Now suppose we choose o« = 2 and a’ = ¢, where ¢ is prime. Then we seek primes
p such that

2
g<p<1l4+——.
qg—1

This inequality is satisfied only when ¢ = 2, in which case we have the prime p = 3.
We have found the pnd 6, which is also perfect. We now try to cap off a prime by a

prime power p¢, e > 1. We must find when there is a prime p with
2 2
1+ —<p<2+—
qg—1 qg—1
For ¢ = 2 and 3, the interval does not contain integers. For ¢ > 5, the interval
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contains only the prime p = 2. Using the inequality

1-1 1— -2
p1< (0% S p1+1,

1-L “ne)~ 1-1
p p

we find that

2° < g+ 1< 2°T

Thus, for instance, if ¢ = 5, then e = 2 so 20 is a pnd (but not a perfect one).
We have just found all pnd’s a with w(a) = 2. To see this, first we note that
lime o R(3°)R(5¢) = 3/2-5/4 < 2, so a cannot be odd. So we write a = 2°p for p a

prime greater than 2 and check when

h(2¢7'p) < 2 < h(2%)

is satisfied. Solving for p + 1, we find

26<p+1§26+1’

which is covered by the two classes of pnd’s we have found.

5.11.2 The offspring lemma

We now describe a method to iteratively find an infinite sequence of a-pnd’s, each
member being used to find the next a-pnd, with the number of distinct prime factors

increasing by 1 at each step.

Lemma 5.42 (The offspring lemma). For each a-pnd ay, there ezists an a-pnd as

such that w(az) = w(ay) + 1. We can construct as depending on the exponent e of
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the least significant prime power p°® of ay and the exponent ey of the prime power
P(ay)||ay. If e =1, either (1) or (2) may be used. If e > 1 and e; = 1, we use (2a).
Otherwise e > 1 and ey > 1, in which case we use (2b).

(1) If e = 1, then we can choose ay = (a1/p)qigo where g, is the smallest prime

such that (a1/p)q1 is a-deficient, and g is the prime after q;.

(2) For any e > 1, we split into two subcases, depending on whether the exponent

ey of the prime P(ay) in ay is 1 or not.

(a) If ey = 1, then we can choose ay to be the canonical a-pnd dividing
(a1/P(a1))q1q2, where q; is the smallest prime such that (ai/P(ay))q is
a-deficient, and qo is the prime after q;.

(b) If e; > 1, then we can choose ay to be the canonical a-pnd dividing

(a1/P(a1))q1, where qq is the largest prime below o(P(a1)®").

Proof. We begin with the first case when e = 1. Write @} = a;/p. Since da|q is
a-deficient, q; > p, so sig(qz) < sig(ajq1). Thus, it remains to show that a{qiqo is

a-abundant. Suppose not. Then
h(diqiq2) < a < h(dip),

so in particular

(1 + l) (1 + l) — W) < h(p) = 1+ .

q1 q2

However, we have the following result which contradicts this inequality, thus estab-

lishing the lemma for the case e = 1.
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Lemma 5.43. Let py < p1 < ps be consecutive primes. Then

1 1 1
14+ — < 20 <<1+—)(1+—).
Po  po—1 D1 D2

In addition, for py = 2,3,5,

1 1 1
1+—<(1—|——) (1+—>.
Po y41 D2

Proof. The first inequality is evident by cross-multiplication. To prove the second

inequality we rely on the following two-prime variant of Bertrand’s postulate due to

Ramanujan [28], namely

Then letting x = 2py, we have pys < 2py. Moreover, since pg and ps are prime,

pe < 2pg— 1, 0r pg— 1> (py — 1)/2. Thus,

1 2 1 1 1 1
1+ <1+ <<1+ )(1+—)§<1+—><1+—),
po— 1 p2—1 P2 — 2 D2 D1 D2

establishing the lemma for py > 11/2. The final inequality may be verified by direct

calculation. O

We now turn to the second case where e > 1. Let a] = a;1/P(ay). For the first
subcase where e; = 1, we can repeat the argument proving case 1 to show that a/q;q-
is a-abundant. Thus, it remains to show that the canonical a-pnd dividing a/qiq2
contains the prime go. But any divisor of a}q1g2 not containing g, is deficient, so we

are done with this subcase.
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For the second subcase where e; > 1, we first show that a)q; is a-abundant. Since

h(a})h(q1) > h(ay), it remains to show that ¢; 1 a}. But by Bertrand’s postulate,

o(Pa)) |
2 - 2

q1 >

We now argue as in the first subcase that the canonical a-pnd dividing a)jq; must
contain ¢y, since any divisor of a) is deficient. This completes the proof of the lemma.

]

The offspring lemma allows us, for instance, to find an infinite sequence of square-

free pnd’s by starting with a squarefree pnd and using construction (1). Thus,

2.3, 2.5-7, 2.5-11-13, 2-5-11-59-61,...

are all pnd’s.

5.11.3 A proof of Shapiro’s theorem

We are now prepared to prove Shapiro’s theorem. Suppose there are infinitely many
a-pnd’s composed of k primes. We arrange them in order of significance. Then,

taking a; to be the ith a-pnd in this sequence, and sig(a;) = sig(p;*), we have

h(as) (1 - 1ek)) — h(ay) (%) < a < h(ay).

g (pk k

Since o(p*) — oo, we have h(a;) — a. We now determine lim; ., h(a;). We factor
a; as

€il Cik

;i = Pin * " Pig
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where the primes p;; are decreasing in j. Now for each j we examine the sequence in
i of primes p;;. Let k' be the smallest j such that there is a constant subsequence.
Thus, lim;_,~ h(pfj’lj) = 1 for 7 < k’. Now we pass to this subsequence, and call the
prime constant pg, so that now p; = pr. Since the primes of a; are in decreasing
order, piw—1) < pr, SO We may now pass to an infinite subsequence where p;—1) is
constant. This process is continued until we have a subsequence where p;; is constant
in ¢ for all j > k'

Now we examine the e;; for ¢ > k. For each e;; that is unbounded in i, we pass to
a subsequence where lim; , €;; = 0o. Then we have h(pj”) —pi/(p;—1) =p;/e(p;)-
The product of these primes is b.

The remaining primes have a sequence e;; bounded in . Thus, we can pass to an
infinite subsequence such that e;; is constant in 7. We call this constant e;. Then the
product of these prime powers pjj is a, and we have o = h(a) - b/p(b), as claimed.

We now prove sufficiency. Let « satisfy Equation (5.17). Since the function n/¢(n)
is multiplicative and for each prime p, p®/¢(p°) is constant over all e > 1, we can
assume that the given b is squarefree. Noting that as e — oo, we have h(b¢) / %,

we also have as e — oo that h(ab®) /" «, so defining x by

1
14+ ==
2 h(abe)’
any prime p < x and (p,ab) = 1 will make abp a-abundant. Let e be sufficiently
large that © > 20(a)P(b). Then by Bertrand’s postulate, we can choose p to be any
prime in the interval (o(a)P(b),z]. Let a; be the significant a-pnd of ab®p. We have
that all primes dividing ab®p must divide a; since if not, p t a;, contradicting that ab®

is a-deficient. We also have that a | a; since sig(a) > sig(p). By the offspring lemma,
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since we have found an a-pnd with k& prime factors, there are a-pnd’s for any number
of prime factors greater than k. This proves anew the sufficiency part of Shapiro’s

theorem.
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