MATH 22: HW2 - Solutions

[Due Sep 28]
Written homework is intended to help students develop their communication and exposition skills through complete write-ups. While correctness of the solution is, of course, necessary, much of the grade for the problem is dependent on clear and appropriate exposition.
Exposition shall be appropriate for the type and level of the problem. One principle we use is that exposition should be detailed around the main aspects of the problem, but terse exposition is appropriate for subsidiary parts of a problem.

1. problem 2.1.1

Solution: The row then column pictures are below, using Geogebra's 3D calculator, and Math3D.org, though sketches might be easier.

2. problem 2.1.9

Solution:

(a)

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
-2 & 3 & 1 \\
-4 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
(1,2,4) \cdot(2,2,3) \\
(-2,3,1) \cdot(2,2,3) \\
(-4,1,2) \cdot(2,2,3)
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
18 \\
5 \\
0
\end{array}\right]
$$

(b) $\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 5\end{array}\right]$
3. problem 2.1.10

Solution:

(a) $2\left[\begin{array}{c}1 \\ -2 \\ -4\end{array}\right]+2\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]+3\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{c}18 \\ 5 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 5\end{array}\right]$

For a 3 by 3 matrix we need 9 multiplications
4. problem 2.1.12

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
z \\
y \\
x
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 3 \\
3 & 3 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & 1 \\
1 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
6
\end{array}\right]}
\end{aligned}
$$

5. problem 2.1.16

Solution:

(a) Rotation by 90 degree's: $R=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
-x
\end{array}\right]
$$

(b) Rotation by 180 degree's: $R=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-x \\
-y
\end{array}\right]
$$

6. problem 2.2.4

Solution:

$$
\begin{aligned}
& a x+b y=f \\
& c x+d y=g
\end{aligned}
$$

we need to multiply the first equation by $l=\frac{c}{a}$ and subtract it from the second equation.

$$
\begin{aligned}
a x+b y & =f \\
\left(d-\frac{b c}{a}\right) y & =g-\frac{f c}{a}
\end{aligned}
$$

and we get $y=\frac{g a-f c}{a d-b c}$, if $a d-b c \neq 0$.
7. problem 2.2.12

Solution:

$$
\begin{aligned}
& \left\{\begin{array}{r}
2 x+3 y+z=8 \\
4 x+7 y+5 z=20 \\
-2 y+2 z=0
\end{array}\right. \\
& \left\{\begin{array}{r}
2 x+3 y+z=8 \\
y+3 z=4 \\
-2 y+2 z=0
\end{array}\right. \\
& \left\{\begin{array}{r}
2 x+3 y+z=8 \\
y+3 z=4 \\
8 z=8
\end{array}\right.
\end{aligned}
$$

$$
\Rightarrow z=1, y=1, x=2
$$

8. problem 2.3.3

Solution:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 2 & 1 \\ -2 & 2 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 2 & 1 \\ -2 & 2 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 4 & 0\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -2\end{array}\right]$
$\Rightarrow E_{21}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{31}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right], E_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$
Hence we have

$$
\begin{aligned}
& U=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & -2
\end{array}\right], M=E_{32} E_{31} E_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
10 & -2 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
10 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & -2
\end{array}\right]}
\end{aligned}
$$

9. problem 2.3.4

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
4 & 6 & 1 & 0 \\
-2 & 2 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 2 & 1 & -4 \\
-2 & 2 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 2 & 1 & -4 \\
0 & 4 & 0 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 2 & 1 & -4 \\
0 & 0 & -2 & 10
\end{array}\right] \\
& \rightarrow\left\{\begin{array} { r l }
{ x _ { 1 } + x _ { 2 } = 1 } \\
{ 2 x _ { 2 } + x _ { 3 } = - 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=\frac{1}{2} \\
x_{2}=\frac{1}{2} \\
x_{3}=-5
\end{array}\right.\right.
\end{aligned}
$$

10. problem 2.3.14

Solution:
$A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & 0 & \frac{5}{4}\end{array}\right]$
Elimination matrices used above:

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{32}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{2}{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{43}
\end{aligned}
$$

[problem numbering is based on the textbook 'Introduction to Linear Algebra by Gilbert Strang, 4th edition]

