MATH 22: HW 3 - Solutions

[Due Oct 6]
Written homework is intended to help students develop their communication and exposition skills through complete write-ups. While correctness of the solution is, of course, necessary, much of the grade for the problem is dependent on clear and appropriate exposition.
Exposition shall be appropriate for the type and level of the problem. One principle we use is that exposition should be detailed around the main aspects of the problem, but terse exposition is appropriate for subsidiary parts of a problem.

1. problem 2.4.1

Solution:
$B A$ is 5 by 5
$A B$ is 3 by 3
$A B D$ is 3 by 1
$D B A$ is not allowed
$A(B+C)$ is not allowed
2. problem 2.4.6

Solution:

We have

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right], A+B=\left[\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], B^{2}=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right],(A+B)^{2}=\left[\begin{array}{ll}
10 & 4 \\
6 & 6
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
A^{2}+2 A B+B^{2} & =\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
7 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
16 & 2 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

which is not equal to $(A+B)^{2}$. The correct formula is

$$
(A+B)^{2}=A^{2}+A B+B A+B^{2}
$$

3. problem 2.4.17

Solution:

(a)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
2 & 1 & \frac{2}{3} \\
3 & \frac{3}{2} & 1
\end{array}\right]
$$

4. problem 2.5.1

Solution:
$A^{-1}=\frac{1}{-12}\left[\begin{array}{cc}0 & -3 \\ -4 & 0\end{array}\right]=\left[\begin{array}{cc}0 & \frac{1}{4} \\ \frac{1}{3} & 0\end{array}\right]$
$B^{-1}=\frac{1}{4}\left[\begin{array}{cc}2 & 0 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ -1 & \frac{1}{2}\end{array}\right]$
$C^{-1}=\left[\begin{array}{cc}7 & -4 \\ -5 & 3\end{array}\right]$
5. problem 2.5.2

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

6. problem 2.5.6

Solution:

(a)

$$
\begin{aligned}
A B=A C & \Rightarrow A^{-1} A B=A^{-1} A C \\
& \Rightarrow B=C
\end{aligned}
$$

(b) Let $B=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right], C=\left[\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right]$ then

$$
A B=\left[\begin{array}{ll}
0 & 5 \\
0 & 5
\end{array}\right], \quad A C=\left[\begin{array}{ll}
0 & 5 \\
0 & 5
\end{array}\right]
$$

7. problem 2.5.23

$$
\begin{array}{rl}
{\left[\begin{array}{ll}
A & I
\end{array}\right]} & =\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 1 & \frac{-1}{2} & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 1 & \frac{-1}{2} & 1 & 0 \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 0 & \frac{-3}{4} & \frac{3}{2} & -\frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{llllll}
2 & 0 & 0 & \frac{3}{2} & -1 & \frac{1}{2} \\
0 & \frac{3}{2} & 0 & \frac{-3}{4} & \frac{3}{2} & -\frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} & 1
\end{array}\right] \\
1 & 0 \\
0 & \frac{3}{4} \\
\frac{-1}{2} & \frac{1}{4} \\
0 & 1
\end{array} 0
$$

8. problem 2.6.5

Solution: Elimination:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
6 & 3 & 5
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right]} \\
A=L U=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right]
\end{gathered}
$$

9. problem 2.6.6

Solution:
$E_{21}\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 4 & 0\end{array}\right]$
$E_{21}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$E_{32}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6\end{array}\right]$
$L=E_{21}^{-1} E_{32}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -4 & 1\end{array}\right]$
$A=L U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -4 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6\end{array}\right]$
10. problem 2.6.8

Solution:

(a)

$$
\begin{gathered}
E_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
E_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{array}\right] \\
E_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -c & 1
\end{array}\right] \\
E=E_{32} E_{31} E_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
-b & -c & 1
\end{array}\right] \\
E A=I
\end{gathered}
$$

(b)

$$
\begin{aligned}
E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
a & 0 & 0 \\
b & c & 1
\end{array}\right]
\end{aligned}
$$

11. problem 2.7.1

> Solution:
> For $A=\left[\begin{array}{ll}1 & 0 \\ 9 & 3\end{array}\right]$ we have

$$
\begin{aligned}
A^{\top} & =\left[\begin{array}{ll}
1 & 9 \\
0 & 3
\end{array}\right] \\
A^{-1} & =\frac{1}{3}\left[\begin{array}{cc}
3 & 0 \\
-9 & 1
\end{array}\right] \\
\left(A^{-1}\right)^{\top} & =\frac{1}{3}\left[\begin{array}{cc}
3 & -9 \\
0 & 1
\end{array}\right] \\
\left(A^{\top}\right)^{-1} & =\frac{1}{3}\left[\begin{array}{cc}
3 & -9 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

For the matrix $A=\left[\begin{array}{ll}1 & c \\ c & 0\end{array}\right]$

$$
\begin{aligned}
& A^{\top}=\left[\begin{array}{ll}
1 & c \\
c & 0
\end{array}\right] \\
& A^{-1}=\frac{-1}{c^{2}}\left[\begin{array}{cc}
0 & -c \\
-c & 1
\end{array}\right] \\
& \left(A^{-1}\right)^{\top}=\frac{-1}{c^{2}}\left[\begin{array}{cc}
0 & -c \\
-c & 1
\end{array}\right] \\
& \left(A^{\top}\right)^{-1}=\frac{-1}{c^{2}}\left[\begin{array}{cc}
0 & -c \\
-c & 1
\end{array}\right]
\end{aligned}
$$

12. problem 2.7.31

Solution:

$$
\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 40 & 2 \\
50 & 1000 & 50
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

Total cost: $x^{T} A^{\top} y$ Values of one truck and one plane:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 4 & 2 \\
50 & 1000 & 50
\end{array}\right]\left[\begin{array}{l}
700 \\
3 \\
3000
\end{array}\right]} \\
& =\left[\begin{array}{l}
700+12+6000 \\
35000+3000+15000
\end{array}\right]
\end{aligned}
$$

1 truck: 6712
1 plane: 53000

