MATH 22: HW 3 - Solutions

[Due Oct 6]

Written homework is intended to help students develop their communication and exposition skills through complete write-ups. While correctness of the solution is, of course, necessary, much of the grade for the problem is dependent on clear and appropriate exposition. Exposition shall be appropriate for the type and level of the problem. One principle we use is that exposition should be detailed around the main aspects of the problem, but terse exposition is appropriate for subsidiary parts of a problem.

1. problem 2.4.1

Solution: BA is 5 by 5 AB is 3 by 3 ABD is 3 by 1 DBA is not allowed A(B+C) is not allowed

2. problem 2.4.6

Solution: We have

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}, A + B = \begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, B^{2} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}, (A + B)^{2} = \begin{bmatrix} 10 & 4 \\ 6 & 6 \end{bmatrix}$$

 $\quad \text{and} \quad$

$$A^{2} + 2AB + B^{2} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 7 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 16 & 2 \\ 3 & 0 \end{bmatrix}$$

which is not equal to $(A + B)^2$. The correct formula is

$$(A+B)^2 = A^2 + AB + BA + B^2$$

 $3. \ \mathrm{problem} \ 2.4.17$

$4. \ \mathrm{problem} \ 2.5.1$

Solution:

$$A^{-1} = \frac{1}{-12} \begin{bmatrix} 0 & -3 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{4} \\ \frac{1}{3} & 0 \end{bmatrix}$$

$$B^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 0 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -1 & \frac{1}{2} \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$$

5. problem 2.5.2

Solu	tio	n:	1			
0	0	1	-1	0	0	1
0	1	0	=	0	1	0
1	0	0		1	0	0
-			$^{-1}$	-		
0	1	0		0	0	1
0	0	1	=	1	0	0
1	0	1 0		0	1	0

 $6. \ \mathrm{problem} \ 2.5.6$

Solution:
(a)

$$AB = AC \Rightarrow A^{-1}AB = A^{-1}AC$$

$$\Rightarrow B = C$$
(b) Let $B = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ -2 & 3 \end{bmatrix}$ then

$$AB = \begin{bmatrix} 0 & 5 \\ 0 & 5 \end{bmatrix}, \quad AC = \begin{bmatrix} 0 & 5 \\ 0 & 5 \end{bmatrix}$$

Solution: $\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & -\frac{2}{3} & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & 0 & -\frac{3}{4} & \frac{3}{2} & -\frac{3}{4} \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & -\frac{2}{3} & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 0 & 0 & \frac{3}{2} & -1 & \frac{1}{2} \\ 0 & \frac{3}{2} & 0 & -\frac{3}{4} & \frac{3}{2} & -\frac{3}{4} \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & -\frac{2}{3} & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{3}{4} & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{4} & -\frac{1}{2} & \frac{3}{4} \end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix}$

8. problem 2.6.5

Γ

Solution:	Elimination:												
		1	0	0] [2	1	0]		2	1	0
		$\begin{bmatrix} 1\\ 0\\ -3 \end{bmatrix}$	1	0		0	4	2	=	=	0	4	2
		-3	0	1		6	3	5			0	0	5
					ſ	1	0	0		2	1	0]
		<i>A</i> =	= L	U =		0	1	0		0	4	2	
						3	0	1		0	0	5	

```
Solution:

E_{21} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 4 & 0 \end{bmatrix}
E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
E_{32} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix}
L = E_{21}^{-1} E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}
= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}
A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix}
```

 $10.\ {\rm problem}\ 2.6.8$

Solution:
(a)

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -b & 0 & 1 \end{bmatrix}$$

$$E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c & 1 \end{bmatrix}$$

$$E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b & -c & 1 \end{bmatrix}$$

$$EA = I$$
(b)

$$E_{21}^{-1}E_{31}^{-1}E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix}$$

11. problem 2.7.1

Solution: For $A = \begin{bmatrix} 1 & 0 \\ 9 & 3 \end{bmatrix}$ we have $A^{\mathsf{T}} = \left[\begin{array}{cc} 1 & 9 \\ 0 & 3 \end{array} \right]$ $A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ -9 & 1 \end{bmatrix}$ $\left(A^{-1}\right)^{\top} = \frac{1}{3} \left[\begin{array}{cc} 3 & -9 \\ 0 & 1 \end{array} \right]$ $\left(A^{\top}\right)^{-1} = \frac{1}{3} \left[\begin{array}{cc} 3 & -9\\ 0 & 1 \end{array}\right]$ For the matrix $A = \begin{bmatrix} 1 & c \\ c & 0 \end{bmatrix}$ $A^{\top} = \begin{bmatrix} 1 & c \\ c & 0 \end{bmatrix}$ $A^{-1} = \frac{-1}{c^2} \begin{bmatrix} 0 & -c \\ -c & 1 \end{bmatrix}$ $\left(A^{-1}\right)^{\top} = \frac{-1}{c^2} \left[\begin{array}{cc} 0 & -c \\ -c & 1 \end{array} \right]$ $\left(A^{\top}\right)^{-1} = \frac{-1}{c^2} \begin{bmatrix} 0 & -c \\ -c & 1 \end{bmatrix}$

12. problem 2.7.31

Solution:

$$\left[\begin{array}{cc} x_1 & x_2 \end{array}\right] \left[\begin{array}{cc} 1 & 40 & 2 \\ 50 & 1000 & 50 \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array}\right]$$

Total cost: $x^T A^\top y$ Values of one truck and one plane:

$$\begin{bmatrix} 1 & 4 & 2 \\ 50 & 1000 & 50 \end{bmatrix} \begin{bmatrix} 700 \\ 3 \\ 3000 \end{bmatrix}$$
$$= \begin{bmatrix} 700 + 12 + 6000 \\ 35000 + 3000 + 15000 \end{bmatrix}$$

1 truck: 6712

1 plane: 53000