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Practice Midterm 2
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Instructions:

1. Please read all the instructions, and read and sign the statement at the bottom of this page.

2. Print your name legibly at the top of this page, and indicate your section by checking the appropriate
box.

3. Some problems have multiple parts, do all of them. The different parts of a problem are not necessarily
worth the same number of points.

4. Except on clearly indicated short answer problems, you must explain what you are doing, and show
your work. You will be graded on your work, not just on your answer. Make it clear and legible so we can
follow it.

5. It is fine to leave your answer in a form such as ln(.02) or
√
239 or (385)(133). However, if an expression

can be easily simplified (such as eln(.02) or cos(π) or (3− 2)), you should simplify it.
Answers should not be rounded. If the answer is π then 3.14159 is wrong.
If the problem includes units, your answer should include units.

6. There are a few pages of scratch paper at the end of the exam. We will not look at these pages unless
you write on a problem “Continued on page. . . ”

7. Once finished, you will upload your exam to Gradescope. You must assign pages to each question
so that we can return your scores in a reasonable timeframe. Once the exam is uploaded, give your
physical copy to the instructors in case there is a problem with the upload. If you finish early, you should
find the attending instructor before uploading so as not to distract others.

8. Honor Code: This exam is closed book. You may not consult notes, calculators (except as explicitly
permitted for accessibility), phones, or any other external resource. Please turn off your devices until you
have finished the exam.

It is a violation of the honor code to give or receive help on this exam.

STATEMENT: I have read these instructions, and I understand how the honor code applies to this exam.

SIGNATURE:



1. (10 points) Which two matrices in the following list have the same nullspace?

A =


0 0

1 2

0 3

 , B =


0 0 1

1 2 0

0 3 0

 , C =

1 1

0 1

 , D =


0 0

1 2

2 4

3 6



Solution: The nullspace contains vectors with the same number of entries as there are columns
in A. So N(B) is is not in the same space an any other matrix, so can’t be part of the pair.
Each of the other matrices only has two vectors, so the nullspace will only be nontrivial if one is
a multiple of the other, since this is the only way two vectors can be linearly dependent. We see
this is not the case for A and B, so they both have the trivial nullspace N(A) = N(B) = {⃗0}.

Indeed, D has the nullspace N(D) =

a

 2

−1

 , a in R
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2. (10 points) You’ve been hired to consult a farm on their livestock selection. They’re considering
changing their set of animals, and currently have fifty goats and fifty sheep. Each animal has different
grazing and housing requirements. The amounts of these per animal are summarized in the below
table. The farm has 100 acres of grazing area, and a 750 square foot barn. They’d really prefer not to
construct new housing for the animals, or purchase more land, so your task is to tell them what other
sets of animals they could have.

Animal Acres of Land Square feet in barn

goat 1 10

cow 3 20

sheep 1 5

To make this easier for the farmers to interpret, you must also provide three concrete alternatives,
different amounts of the livestock that they could provide for.

One way to approach this is to let g, c, and s be the number of goats, cow, and sheep the farm has,
and write equations for each resource that many animals will use, and solve the resulting system.
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Solution: Translating this into a system of equations, we have

g + 3c+ s = 100

10g + 20c+ 5s = 750

We can solve this by translating it into a matrix equation

Ax⃗ =

 1 3 1

10 20 5



g

c

s

 =

0
0

 = b⃗

which we are looking for the complete solution to. We’ve already been given a particular solution,
the current amounts of animals, so it suffices to find a basis for the nullspace, the special solutions.
We can do this by first identifying the free columns, each will correspond to one of these. 1 3 1

10 20 5

 →

1 3 1

0 −10 −5

 →

1 3 1

0 1 1/2

 →

1 0 −1/2

0 1 1/2



We see there is one free column, the last, corresponding the vector


−1/2

1/2

−1

 in the nullspace. We

can interpret this as An⃗ = − 1
2 a⃗1 +

1
2 a⃗2 − a⃗2 = 0⃗, or a⃗2 = a⃗1 + 2a⃗2, which is indeed correct. This

can be interpreted as one cow use the same amount of these two resources as one goat and two
sheep.
Thus the complete solution is 


50

0

50

+ a


−1/2

1/2

−1

 : a in R



To make this more concrete, we can take a = 2, 4, 6 to get the solutions


49

1

48

 ,


48

2

46

 ,


47

3

44

.
Another way to explain this to the farmer is ”for every cow you want to get, you have to give up
one goat and two sheep”.
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3. (10 points) Find the matrix P that projects onto the row space of A =

1 1 1

1 2 3

. Note the projection

matrix onto the column space of B is P = B(BTB)−1BT .

It could be helpful to use the inverse formulaa b

c d

−1

=
1

ad− bc

 d −b

−c a



Solution: Note we must first translate from the row space to the columns space to apply our
formula (if we tried applying the formula to A we’d try to invert a singular matrix). Using the

provided formula for B = AT =


1 1

1 2

1 3

. We compute this in steps. First, we find

BTB = AB =

1 1 1

1 2 3



1 1

1 2

1 3

 =

3 6

6 14

 → (BTB)−1 =
1

6

14 −6

−6 3


by our inverse formula, or Gaussian Elimination of the augmented matrix [BTB|I]. Therefore

P = B(BTB)−1BT =


1 1

1 2

1 3

 1

6

14 −6

−6 3

1 1 1

1 2 3

 =
1

6


5 2 −1

2 2 2

−1 2 5
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4. (10 points) Let

A =


1 2 −1 4

0 2 3 1

−1 −2 1 −4


(a) Find a basis for the null space of A.
(b) What is the dimension of the null space of A ? dimN(A) =

6



Solution: (a) To find the null space we apply vow reduction.
1 2 −1 4

0 2 3 1

−1 −2 1 −4

 −→


1 2 −1 4

0 2 3 1

0 0 0 0



−→


1 0 −4 3

0 2 3 1

0 0 0 0



→


1 0 −4 3

0 1 3
2

1
2

0 0 0 0


Hence x1 and x2 are pivot variables and x3 and x4 are free.
we have  x1 = 4x3 − 3x4

x2 = − 3
2x3 − 1

2x4

N(A) =




4x3 − 3x4

− 3
2x3 − 1

2x4

x3

x4

 ;x3, x4 ∈ R



=


x3


4

− 3
2

1

0

+ x4


−3

−1
2

0

1

 ;x3, x4 ∈ R


(b) The null space has the basis

B =




4

− 3
2

1

0

 ,


−3

− 1
2

0

1




hence dimN(A) = 2 (which is the number of vectors in the basis = number of free variables after
row reduction)
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5. (5 points) The columns of a matrix A are linearly independent vectors if N(A), the kernel of A is

Solution: The zero subspace.
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6. (10 points) If A has m rows and n columns,
(a) What is the maximum possible value for the dimension of N

(
AT

)
?

(b) If, in addition, we know that dimN(AT ) = 2 what is the rank of A?

Solution:
(a) The maximum is m.

(b) The rank of A is m− 2.
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7. (10 points) Let P be a 3 by 3 matrix associated with an orthogonal projection on a plane in R3. Given
the following identities find P ,

P


1

1

0

 =


1

1

0



P


0

0

1

 =


0

0

1


.

Solution: Note that the projection matrix maps u =


1

1

0

 and v =


0

0

1

 to themselves. That

means both u and v are in the projection plane. Since the plane is a two dimensional subspace of
R3 and u, v are independent then u, v must be a basis for the plane. Now, let us find projection
matrix from u and v. Let

A =


1 0

1 0

0 1


then we have p = A

(
A⊤A

)−1
A⊤.

A⊤A =

 1 1 0

0 0 1




1 0

1 0

0 1

 =

 2 0

0 1


(
A⊤A

)−1
=

 1
2 0

0 1


(
A⊤A

)−1
A⊤ =

 1
2 0

0 1

 1 1 0

0 0 1

 =

 1
2

1
2 0

0 0 1



⇒P = A
(
A⊤A

)−1
A⊤ =


1 0

1 0

0 1


 1

2
1
2 0

0 0 1

 =


1
2

1
2 0

1
2

1
2 0

0 0 1
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8. Let W be the subspace spanned by u, v,

u =


1

1

0

0



v =


0

1

1

0


(a) Find all vectors that are orthogonal to every vector in W .

(b) Do vectors found in part (a) form a subspace of R4? If yes, what is the dimension of that subspace?
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Solution: (a) The set of vectors that are orthogonal to a subspace W are denoted usually by
W⊥ (the orthogonal complement of W ). We form a matrix with u and v as rows,

A =

 1 1 0 0

0 1 1 0


a vector x ∈ R4 is orthogonal to W if it’s orthogonal to both basis vectors u and v. This means
W⊥ = N(A). To find the null space we reduce A to 1 0 −1 0

0 1 1 0

 →

 x1 = x3

x2 = −x3

then

N(A) =




x3

−x3

x3

x4

 ; x3, x4 ∈ R



W⊥ = N(A) =


x3


1

−1

1

0

+ x4


0

0

0

1

 ;x3, x4 ∈ R


(b) Yes, ω⊥ is a subspace since N(A) is a subspace. The rectors,

1

−1

1

0

 ,


0

0

0

1


form a basis for W⊥ hence dimW⊥ = 2.
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