Homework 1 - Problem Set

In problem 1, 2 and 3 draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as $t \rightarrow \infty$. If this behavior depends on the initial value of y at $t=0$, describe the dependency.

Problem 1: (Section 1.1 \#1)
$y^{\prime}=3-2 y$
Problem 2: (Section $1.1 \# 3$)
$y^{\prime}=-1-2 y$
Problem 3: (Section 1.1 \#22)
$y^{\prime}=-2+t-y$
Problem 4: (Section $1.2 \# 7$)
The field mouse population in Example 1 satisfies the differential equation

$$
\frac{d p}{d t}=\frac{p}{2}-450
$$

(a) Find the time at which the population becomes extinct if $p(0)=850$.
(b) Find the time of extinction if $p(0)=p_{0}$, where $0<p_{0}<900$.

Problem 5: (Section 1.2 \#2)
Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature. Hence it satisfies the differential equation

$$
\frac{d u}{d t}=-k(u-T)
$$

where is the constant ambient temperature and k is a positive constant. Suppose that $u(0)=u_{0}$ is the initial temperature,
(a) Find the temperature of the object at any time.
(b) Let τ be time at which the initial temperature difference $u_{0}-T$ has been reduced by half. Find the relation between k and τ.

Problem 6: (Section 1.3 \#11)
Determine the value of the r for which $y^{\prime}+2 y=0$ has the solution of the form $e^{r t}$. (optional question: what about $y^{\prime \prime}+y^{\prime}-6 y=0$?)

Problem 7: A very important application of ODEs is to describe how probabilities change of time in random, or stochastic, processes called continuous time Markov Chains (CTMC). Perhaps the simplest example is a system (say the confirmation of a molecule) which can be in one of two states, 0 or 1 , and switches between them at a constant rate h. Then the probabilities to be in states 0 and 1 (p_{0} and p_{1} respectively) obey the system of two differential equations:

$$
\begin{align*}
& \frac{d}{d t} p_{0}=-h p_{0}+h p_{1} \\
& \frac{d}{d t} p_{1}=h p_{0}-h p_{1} \tag{1}
\end{align*}
$$

These equations are subject to the conservation of probability constraint $p_{0}+p_{1}=1$.
(a) Solve the differential equations (hint: rewrite the system as a single ODE) and describe the long-term behavior.
(b) For the more general Markov chain where the rates are different, the equations are

$$
\begin{align*}
& \frac{d}{d t} p_{0}=-h p_{0}+w p_{1} \tag{2}\\
& \frac{d}{d t} p_{1}=h p_{0}-w p_{1}
\end{align*}
$$

Without solving, describe the long-term behavior of this ODE.

Solutions

Problem 1 [Correct drawing of vector field +6 point] For any initial conditions the solutions tends towards 3/2. [Long-term behavior +4 point]

Problem 2 [Correct drawing of vector field +6 point] For any initial conditions the solutions tend towards $-1 / 2$. [Long-term behavior +4 point]

Problem 3 [Correct drawing of vector field +6 point] For any initial conditions the solutions tend towards $y=x-2$. [Long-term behavior +4 point]

Problem 4 Given $\frac{d p}{d t}=\frac{p}{2}-450$ we have the solution

$$
p(t)=900+C e^{t / 2}[+4 \text { points }]
$$

(a) If $p(0)=850$ we get $C=-50$ and $p(t)=900-50 e^{t / 2}[+4$ points]. Population becomes extinct when

$$
900-50 e^{t / 2}=0 \Rightarrow t=2 \ln (18)[+4 \text { points }]
$$

(b) If $p(0)=p_{0}$ then $C=p_{0}-900<0$ and $p(t)=900+\left(p_{0}-900\right) e^{t / 2}[+4$ points], hence

$$
900+\left(p_{0}-900\right) e^{t / 2}=0 \Rightarrow t=2 \ln \left(\frac{900}{900-p_{0}}\right)[+4 \text { points }]
$$

Problem 5 (a) Newton's law of heating can be stated as

$$
\frac{d u}{d t}=-k(u-T)
$$

where $u(t)$ is the temperature at time t and T is the constant environment temperature. We can separate this equation as

$$
k d t+\frac{1}{u-T} d u=0
$$

leading to the solution $k t+\ln (u-T)=c_{0}$ or

$$
u(t)=T+c e^{-k t}[+5 \text { points }]
$$

Notice that $u(0)=T+c$ and $u(\infty)=T$. Now, given $u(0)=u_{0}$ we have

$$
u(t)=T+\left(u_{0}-T\right) e^{-k t}[5 \text { points }]
$$

(b) Assuming $u(\tau)-T=\left(u_{0}-T\right) / 2$ we get

$$
\left(u_{0}-T\right) e^{-k \tau}=\left(u_{0}-T\right) / 2[+5 \text { points }]
$$

which means $\tau=\ln (2) / k[+5$ points $]$.
Problem 6 From $\left(e^{r t}\right)^{\prime}+2 e^{r t}=r e^{r t}+2 e^{r t}=0$ we conclude $r=-2[+10$ points].

Problem 7

(a) Let $p_{0}=p$ therefore $p_{1}=1-p$. The first equation (we could equivalently look at the second) becomes

$$
\begin{equation*}
\frac{d}{d t} p=-h p+h(1-p)=h-2 h p \quad[\text { Identify equation }+4] \tag{3}
\end{equation*}
$$

the solution is

$$
\begin{equation*}
p=C e^{-2 t h}+\frac{1}{2}[\text { Solve }+4] . \tag{4}
\end{equation*}
$$

In the long term p will tend towards $1 / 2$ [Correct long-term behavior +4$]$.
(b) For the more general situation,

$$
\begin{equation*}
\frac{d}{d t} p=w-(w+h) p \quad[\text { Identify equation }+4] \tag{5}
\end{equation*}
$$

We can see that if $p>w /(w-h)$ the probability to be in state 0 will decrease, while if $p>w /(w+$ $h)$ the probability will increase. Thus p will tend towards $w /(w+h)$ [Identify equation +4].

