Homework 1 - Problem Set

In problem 1, 2 and 3 draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as $t \rightarrow \infty$. If this behavior depends on the initial value of y at $t=0$, describe the dependency.

Problem 1: (Section 1.1 \#1)
$y^{\prime}=3-2 y$
Problem 2: (Section 1.1 \# 3)
$y^{\prime}=-1-2 y$
Problem 3: (Section 1.1 \#22)
$y^{\prime}=-2+t-y$
Problem 4: (Section $1.2 \# 7$)
The field mouse population in Example 1 satisfies the differential equation

$$
\frac{d p}{d t}=\frac{p}{2}-450
$$

(a) Find the time at which the population becomes extinct if $p(0)=850$.
(b) Find the time of extinction if $p(0)=p_{0}$, where $0<p_{0}<900$.

Problem 5: (Section $1.2 \# 2$)
Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature. Hence it satisfies the differential equation

$$
\frac{d u}{d t}=-k(u-T)
$$

where is the constant ambient temperature and k is a positive constant. Suppose that $u(0)=u_{0}$ is the initial temperature,
(a) Find the temperature of the object at any time.
(b) Let τ be time at which the initial temperature difference $u_{0}-\tau$ has been reduced by half. Find the relation between k and τ.

Problem 6: (Section 1.3 \#11)
Determine the value of the r for which $y^{\prime}+2 y=0$ has solution of the form $e^{r t}$. (optional question: what about $y^{\prime \prime}+y^{\prime}-6 y=0$?)

Problem 7: A very important application of ODEs is to describe how probabilities change of time in random, or stochastic, processes called continuous time Markov Chains (CTMC). Perhaps the simplest example is a systems (say the confirmation of a molecule) which can be in one of two states, 0 or 1 , and switches between them at a constant rate h. Then the probabilities to be in states 0 and 1 (p_{0} and p_{1} respectively) obey the system of two differential equations:

$$
\begin{align*}
& \frac{d}{d t} p_{0}=-h p_{0}+h p_{1} \\
& \frac{d}{d t} p_{1}=h p_{0}-h p_{1} \tag{1}
\end{align*}
$$

These equations are subject to the conservation of probability constraint $p_{0}+p_{1}=1$.
(a) Solve the differential equations (hint: rewrite the system as a single ODE) and describe the long-term behavior.
(b) For the more general Markov chain where the rates are different, the equations are

$$
\begin{align*}
& \frac{d}{d t} p_{0}=-h p_{0}+w p_{1} \tag{2}\\
& \frac{d}{d t} p_{1}=h p_{0}-w p_{1}
\end{align*}
$$

Without solving, describe the long-term behavior of this ODE.

