Homework 2 - Problem Set

(Numbered according to 9th edition)
Problem 1: Section 2.1 \#13
Problem 2: Section 2.1 \#14
Problem 3: Section 2.2 \#4
Problem 4: Section 2.2 \#8
Problem 5: Section $2.2 \# 32$
Problem 6: Section 2.3 \#3
Problem 7: Section 2.4 \#25
Problem 8: Section $2.5 \# 2$
Problem 9: Section $2.5 \# 3$
Problem 10: Section $2.6 \# 3$

Section 2.1

\#13
Using the integrating factor e^{-t} we have

$$
e^{-t} y^{\prime}-e^{-t} y=2 t e^{t}
$$

since $e^{-t} y^{\prime}=\left(e^{-} t y\right)^{\prime}+e^{-t} y$ we get

$$
\left(e^{-} t y\right)^{\prime}=2 t e^{t}
$$

and hence

$$
e^{-t} y=\int_{t_{0}}^{t} 2 s e^{s} d s+c=2 e^{t}(t-1)+c
$$

the initial condition $y(0)=1$ implies $c=3$ and

$$
y(t)=2 e^{2 t}(t-1)+3 e^{t}
$$

\#14

$$
y^{\prime}+2 y=t e^{-2 t}
$$

Integrating factor: $\mu(t)=e^{2 t}$

$$
\begin{aligned}
& \Rightarrow\left(e^{2 t} y\right)^{\prime}=t \\
& \Rightarrow e^{2 t} y=\frac{t^{2}}{2}+c \\
& \Rightarrow y=\frac{t^{2}}{2} e^{-2 t}+c e^{-2 t}
\end{aligned}
$$

Boundary condition $y(1)=0 \Rightarrow c=\frac{-1}{2}$

$$
\Rightarrow \text { solution: } \quad y(t)=\frac{e^{-2 t}}{2}\left(t^{2}-1\right)
$$

Section 2.2

$\# 4$

$$
y^{\prime}=\frac{3 x^{2}-1}{3+2 y}
$$

Separation of variables:

$$
\begin{aligned}
& (3+2 y) d y+\left(1-3 x^{2}\right) d x=0 \\
\Rightarrow & \left\{\begin{array} { c }
{ H _ { 1 } ^ { \prime } (x) = 1 - 3 x ^ { 2 } } \\
{ H _ { 2 } ^ { \prime } (y) = 3 + 2 y }
\end{array} \Rightarrow \left\{\begin{array}{l}
H_{1}(x)=x-x^{3} \\
H_{2}(y)=3 y+y^{2}
\end{array}\right.\right.
\end{aligned}
$$

\Rightarrow solution:

$$
x-x^{3}+3 y+y^{2}=c
$$

\#8

To solve

$$
\frac{d y}{d x}=\frac{x^{2}}{1+y^{2}}
$$

we separate it as

$$
-\left(x^{2}\right) d x+\left(1+y^{2}\right) d y=0
$$

and observe that if $H_{1}^{\prime}(x)=-x^{2}$ and $H_{2}^{\prime}(y)=1+y^{2}$ then

$$
H_{1}(x)+H_{2}(y)=-\frac{x^{3}}{3}+y+\frac{y^{3}}{3}+c_{0}
$$

and the solutions are given by

$$
-x^{3}+3 y+y^{3}=c
$$

\#32

We can rewrite this homogeneous differential equation as

$$
\frac{d y}{d x}=\frac{1+3(y / x)^{2}}{2(y / x)}
$$

using $v=y / x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ we have

$$
x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}
$$

using separation of variables and if $H_{1}^{\prime}(x)=-1 / x$ and $H_{2}^{\prime}(v)=2 v /\left(1+v^{2}\right)$ then

$$
H_{1}(x)+H_{2}(v)=\ln \left(1+v^{2}\right)-\ln (x)
$$

hence the solution is given by $\ln \left(\left(1+v^{2}\right) / x\right)=c_{0}$ which is equivalent to

$$
x^{2}+y^{2}-c x^{3}=0
$$

Section 2.3

\#3

Solution: $50 e^{-0.2}\left(1-e^{-0.2}\right) \mathrm{lb}(7.42 l b)$

Section 2.4

\#25

To verify that $y_{1}+y_{2}$ is a solution if (ii) we write

$$
\left(y_{1}+y_{2}\right)^{\prime}+p\left(y_{1}+y_{2}\right)=\left(y_{1}^{\prime}+p y_{1}\right)+\left(y_{2}^{\prime}+p y_{2}\right)=0+g(t)
$$

Section 2.5

$\# 2$

$$
\frac{d y}{d t}=a y+b y^{2}=y(a+b y)
$$

$y(t)=0 \rightarrow$ stable equilibrium solution
$y(t)=\frac{-a}{b} \rightarrow$ unstable equilibrium solution
$\# 3$

$$
\frac{d y}{d t}=y(y-1)(y-2)
$$

stable equilibrium solutions: $y(t)=1$
unstable equilibrium solution:

$$
\begin{aligned}
& y(t)=0 \\
& y(t)=2
\end{aligned}
$$

Section 2.6

\#3

Exact equation

$$
\begin{aligned}
& \left(3 x^{2}-2 x y+2\right) d x+\left(6 y^{2}-x^{2}+3\right) d y=0 \\
\Rightarrow & \left\{\begin{array}{l}
F(x, y)=x^{3}-x^{2} y+2 x+h(y) \\
F(x, y)=2 y^{3}-y x^{2}+3 y+k(x)
\end{array}\right. \\
\Rightarrow & h(y)=2 y^{3}+3 y
\end{aligned}
$$

\Rightarrow Solution: $F(x, y)=c$

$$
x^{3}-x^{2} y+2 x+2 y^{3}+3 y=c
$$

