Homework 7 - Problem Set

(Numbered according to 9th edition)

Problem 1: Section 7.8 \#2
Problem 2: Section 7.8 \#18 (only a,b,c)
Problem 3: Section 7.9 \#1
Problem 4: Section 7.9 \#13

Solutions

7.8.2

$x^{\prime}=\left[\begin{array}{ll}4 & -2 \\ 8 & -4\end{array}\right] x$
Eigenvalues:

$$
\begin{gathered}
\left|\begin{array}{cc}
4-\lambda & -2 \\
8 & -4-\lambda
\end{array}\right|=\lambda^{2}-16+16=0 \\
\Rightarrow \lambda=0
\end{gathered}
$$

Eigenvector:

$$
\begin{gathered}
{\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\Rightarrow \xi=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{gathered}
$$

generalized eigenvector:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \eta=\xi } \\
\Rightarrow & \left\{\begin{array}{l}
4 \eta_{1}-2 \eta_{2}=1 \\
8 \eta_{1}-4 \eta_{2}=2
\end{array}\right.
\end{aligned}
$$

any vector independent of ζ works. Let $\eta=\left[\begin{array}{l}1 / 4 \\ 0\end{array}\right]$. general solution:

$$
\begin{aligned}
x(t) & =c_{1} \xi+c_{2}(t \xi+\eta) \\
& =c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} t\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\frac{1}{4} c_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

7.8.18

$x^{\prime}=\left[\begin{array}{ccc}5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3\end{array}\right] x$
(a) Verify that $A \xi^{(1)}=\xi^{(1)}$ and $A \xi^{(2)}=\xi^{(2)}$. Given

$$
A-I=\left[\begin{array}{ccc}
4 & -3 & -2 \\
8 & -6 & -4 \\
-4 & 3 & 2
\end{array}\right]
$$

the rank of $A-I$ is two. Hence

$$
(A-I) x=0
$$

has two independent solutions.
(b) Assuming we have a solution of the form $x=\xi+e^{t}+\eta e^{t}$, we obtain

$$
\left(e^{t}+t e^{t}\right) \xi+e^{t} \eta=A\left(+e^{t} \xi+e^{t} \eta\right)
$$

which implies

$$
\begin{aligned}
\xi & =A \xi \\
\xi+\eta & =A \eta
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& (A-I) \xi=0 \\
& (A-I) \eta=\xi
\end{aligned}
$$

(c) We know that $(A-I) x=0$ can have at most two linearly independent solutions. Any linear combination also gives an eigenvector

$$
\begin{aligned}
(A-I)\left(c_{1} \xi^{(1)}+c_{2} \xi^{(2)}\right) & =c_{1}(A-I) \xi^{(1)} \\
& +c_{2}(A-I) \xi^{(2)} \\
& =c_{1} \xi^{(1)}+c_{2} \xi^{(2)}
\end{aligned}
$$

7.9.1

$$
x^{\prime}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] x+\left[\begin{array}{l}
e^{t} \\
t
\end{array}\right]
$$

Eigenvalues of $A=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]$

$$
\begin{gathered}
\left|\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right|=\lambda^{2}-4+3=0 \\
\Rightarrow \lambda_{1}=-1, \lambda_{2}=1
\end{gathered}
$$

Eigenvectors:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right] \xi^{(1)}=0 \Rightarrow \xi^{(1)}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right] \xi^{(2)}=0 \Rightarrow \xi^{(2)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{aligned}
$$

Transformation matrix:

$$
T=\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]
$$

where

$$
T^{-1} \cdot A T=D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

In terms of y with $x=T_{y}$ our differential equation becomes

$$
\frac{d}{d t}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]+T^{-1}\left[\begin{array}{l}
e^{t} \\
t
\end{array}\right]
$$

where

$$
\begin{aligned}
T^{-1}\left[\begin{array}{l}
e^{t} \\
t
\end{array}\right] & =\frac{1}{2}\left[\begin{array}{rr}
-1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
e^{t} \\
t
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{c}
-e^{t}+t \\
3 e^{t}-t
\end{array}\right]
\end{aligned}
$$

this gives us two first-order equations:

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=-y_{1}+\frac{1}{2}\left(-e^{t}+t\right) \\
& \frac{d y_{2}}{d t}=y_{1}+\frac{1}{2}\left(3 e^{t}-t\right)
\end{aligned}
$$

We can solve this using the method of integrating factors, for instance,

$$
\begin{aligned}
y^{\prime}=y & +\frac{1}{2}\left(3 e^{t}-t\right) \\
\left(e^{-t} y\right) & =\frac{1}{2}\left(3-t e^{-t}\right) \\
e^{-t} y & =\frac{3}{2} t-\frac{1}{2} \int t e^{-t} d t \\
& =\frac{3}{2} t+\frac{1}{2} t e^{-t}+\frac{1}{2} e^{-t}
\end{aligned}
$$

Using the method of integrating factors,

$$
\begin{aligned}
& y_{1}(t)=\frac{-1}{4} e^{t}+\frac{1}{2} t-\frac{1}{2} \\
& y_{2}(t)=\frac{3}{2} t e^{t}+\frac{t}{2}+\frac{1}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=} & \frac{1}{4} e^{t}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\frac{3}{2} t e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +\frac{1}{2} t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

In terms of $x=T y$,

$$
x=\frac{1}{4} e^{t}\left[\begin{array}{l}
-1 \\
-3
\end{array}\right]+\frac{3}{2} t e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

this a particular solution. The general solution is

$$
\begin{aligned}
x(t) & =c_{1} e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
& +\frac{3}{2} t e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{4} e^{t}\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
& +t\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

7.9.13

[only graded for completion]

$$
x^{\prime}=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right] x+I(t)\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]
$$

Eigenvalues and eigenvectors

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i}{2}, \lambda_{2}=-\frac{1}{2}-\frac{i}{2} \\
& \xi^{(1)}=\left[\begin{array}{l}
i \\
4
\end{array}\right], \xi^{(2)}=\left[\begin{array}{c}
-i \\
4
\end{array}\right]
\end{aligned}
$$

change of coordinate transformation

$$
T=\left[\begin{array}{cc}
i & -i \\
4 & 4
\end{array}\right], T^{-1}=\frac{1}{8}\left[\begin{array}{cc}
-4 i & 1 \\
4 i & 1
\end{array}\right]
$$

Equations in y coordinate, $x=T_{y}$

$$
\begin{aligned}
& y_{1}^{\prime}=\left(\frac{-1}{2}+\frac{i}{2}\right) y_{1}-\frac{1}{4} i e^{-\frac{t}{2}} \\
& y_{2}^{\prime}=\left(-\frac{1}{2}-\frac{i}{2}\right) y_{2}+\frac{1}{4} i e^{-t / 2}
\end{aligned}
$$

with Solution

$$
y_{1}(t)=\frac{1}{2} e^{-t / 2}, y_{2}(t)=\frac{1}{2} e^{-t / 2}
$$

the general solution in terms of x,

$$
\begin{aligned}
x(t) & =c_{1} e^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}\left[\begin{array}{l}
i \\
4
\end{array}\right] \\
& +c_{2} e^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}\left[\begin{array}{c}
-i \\
4
\end{array}\right]+4 e^{-t / 2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

fundamental solution

$$
\psi(t)=e^{-\frac{t}{2}}\left[\begin{array}{cc}
\cos \left(\frac{1}{2} t\right) & \sin \left(\frac{1}{2} t\right) \\
4 \sin \left(\frac{1}{2} t\right) & -4 \cos \left(\frac{1}{2} t\right)
\end{array}\right]
$$

Solution to the initial value problem

$$
x(t)=e^{-t / 2}\left[\begin{array}{c}
\sin \left(\frac{1}{2} t\right) \\
4-4 \cos \left(\frac{1}{2} t\right)
\end{array}\right]
$$

